Cargando…
Integrating Artificial Intelligence Tools in the Clinical Research Setting: The Ovarian Cancer Use Case
Artificial intelligence (AI) methods applied to healthcare problems have shown enormous potential to alleviate the burden of health services worldwide and to improve the accuracy and reproducibility of predictions. In particular, developments in computer vision are creating a paradigm shift in the a...
Autores principales: | Escudero Sanchez, Lorena, Buddenkotte, Thomas, Al Sa’d, Mohammad, McCague, Cathal, Darcy, James, Rundo, Leonardo, Samoshkin, Alex, Graves, Martin J., Hollamby, Victoria, Browne, Paul, Crispin-Ortuzar, Mireia, Woitek, Ramona, Sala, Evis, Schönlieb, Carola-Bibiane, Doran, Simon J., Öktem, Ozan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486639/ https://www.ncbi.nlm.nih.gov/pubmed/37685352 http://dx.doi.org/10.3390/diagnostics13172813 |
Ejemplares similares
-
Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy
por: Yeung, Michael, et al.
Publicado: (2021) -
Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation
por: Yeung, Michael, et al.
Publicado: (2022) -
Lesion-specific 3D-printed moulds for image-guided tissue multi-sampling of ovarian tumours: A prospective pilot study
por: Delgado-Ortet, Maria, et al.
Publicado: (2023) -
Clinically Interpretable Radiomics-Based Prediction of Histopathologic Response to Neoadjuvant Chemotherapy in High-Grade Serous Ovarian Carcinoma
por: Rundo, Leonardo, et al.
Publicado: (2022) -
Calibrating the Dice Loss to Handle Neural Network Overconfidence for Biomedical Image Segmentation
por: Yeung, Michael, et al.
Publicado: (2022)