Cargando…
Improving Prediction of Cervical Cancer Using KNN Imputed SMOTE Features and Multi-Model Ensemble Learning Approach
SIMPLE SUMMARY: This paper presents a cervical cancer detection approach where the KNN Imputer techniques is used to fill the missing values and after that SMOTE upsampled features are utilized to train a multi-model ensemble learning approach. Results demonstrate that use of KNN Imputed SMOTE featu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486648/ https://www.ncbi.nlm.nih.gov/pubmed/37686692 http://dx.doi.org/10.3390/cancers15174412 |