Cargando…
Improving Prediction of Cervical Cancer Using KNN Imputed SMOTE Features and Multi-Model Ensemble Learning Approach
SIMPLE SUMMARY: This paper presents a cervical cancer detection approach where the KNN Imputer techniques is used to fill the missing values and after that SMOTE upsampled features are utilized to train a multi-model ensemble learning approach. Results demonstrate that use of KNN Imputed SMOTE featu...
Autores principales: | Karamti, Hanen, Alharthi, Raed, Anizi, Amira Al, Alhebshi, Reemah M., Eshmawi, Ala’ Abdulmajid, Alsubai, Shtwai, Umer, Muhammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486648/ https://www.ncbi.nlm.nih.gov/pubmed/37686692 http://dx.doi.org/10.3390/cancers15174412 |
Ejemplares similares
-
IoT based smart home automation using blockchain and deep learning models
por: Umer, Muhammad, et al.
Publicado: (2023) -
Breast Cancer Detection Using Convoluted Features and Ensemble Machine Learning Algorithm
por: Umer, Muhammad, et al.
Publicado: (2022) -
ETCNN: Extra Tree and Convolutional Neural Network-based Ensemble Model for COVID-19 Tweets Sentiment Classification
por: Umer, Muhammad, et al.
Publicado: (2022) -
Role of convolutional features and machine learning for predicting student academic performance from MOODLE data
por: Abuzinadah, Nihal, et al.
Publicado: (2023) -
Heart failure patients monitoring using IoT-based remote monitoring system
por: Umer, Muhammad, et al.
Publicado: (2023)