Cargando…

Radiomic Analysis of Intrahepatic Cholangiocarcinoma: Non-Invasive Prediction of Pathology Data: A Multicenter Study to Develop a Clinical–Radiomic Model

SIMPLE SUMMARY: Intrahepatic cholangiocarcinoma is a disease with increasing incidence and poor prognosis. The clinicians have a limited capability to predict tumor behavior because the strongest predictors of survival are the pathology data that, unfortunately, can be determined only after surgery....

Descripción completa

Detalles Bibliográficos
Autores principales: Fiz, Francesco, Rossi, Noemi, Langella, Serena, Ruzzenente, Andrea, Serenari, Matteo, Ardito, Francesco, Cucchetti, Alessandro, Gallo, Teresa, Zamboni, Giulia, Mosconi, Cristina, Boldrini, Luca, Mirarchi, Mariateresa, Cirillo, Stefano, De Bellis, Mario, Pecorella, Ilaria, Russolillo, Nadia, Borzi, Martina, Vara, Giulio, Mele, Caterina, Ercolani, Giorgio, Giuliante, Felice, Ravaioli, Matteo, Guglielmi, Alfredo, Ferrero, Alessandro, Sollini, Martina, Chiti, Arturo, Torzilli, Guido, Ieva, Francesca, Viganò, Luca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486795/
https://www.ncbi.nlm.nih.gov/pubmed/37686480
http://dx.doi.org/10.3390/cancers15174204
_version_ 1785103091936264192
author Fiz, Francesco
Rossi, Noemi
Langella, Serena
Ruzzenente, Andrea
Serenari, Matteo
Ardito, Francesco
Cucchetti, Alessandro
Gallo, Teresa
Zamboni, Giulia
Mosconi, Cristina
Boldrini, Luca
Mirarchi, Mariateresa
Cirillo, Stefano
De Bellis, Mario
Pecorella, Ilaria
Russolillo, Nadia
Borzi, Martina
Vara, Giulio
Mele, Caterina
Ercolani, Giorgio
Giuliante, Felice
Ravaioli, Matteo
Guglielmi, Alfredo
Ferrero, Alessandro
Sollini, Martina
Chiti, Arturo
Torzilli, Guido
Ieva, Francesca
Viganò, Luca
author_facet Fiz, Francesco
Rossi, Noemi
Langella, Serena
Ruzzenente, Andrea
Serenari, Matteo
Ardito, Francesco
Cucchetti, Alessandro
Gallo, Teresa
Zamboni, Giulia
Mosconi, Cristina
Boldrini, Luca
Mirarchi, Mariateresa
Cirillo, Stefano
De Bellis, Mario
Pecorella, Ilaria
Russolillo, Nadia
Borzi, Martina
Vara, Giulio
Mele, Caterina
Ercolani, Giorgio
Giuliante, Felice
Ravaioli, Matteo
Guglielmi, Alfredo
Ferrero, Alessandro
Sollini, Martina
Chiti, Arturo
Torzilli, Guido
Ieva, Francesca
Viganò, Luca
author_sort Fiz, Francesco
collection PubMed
description SIMPLE SUMMARY: Intrahepatic cholangiocarcinoma is a disease with increasing incidence and poor prognosis. The clinicians have a limited capability to predict tumor behavior because the strongest predictors of survival are the pathology data that, unfortunately, can be determined only after surgery. Recently, radiomics, i.e., the mathematical analysis of imaging modalities, led to a major improvement in the non-invasive prediction of microscopic characteristics of several tumors. In this multicenter study, we collected a large number of patients affected by intrahepatic cholangiocarcinoma and we demonstrated that the radiomic data of the tumor and peritumoral tissue extracted from the computed tomography at diagnosis have a strong association with tumor grading and microscopic vascular invasion, which are two major biomarkers of tumor aggressiveness. The combination of radiomic and clinical data maximizes the accuracy of prediction. The integration of radiomics into clinical decision processes is probably one of the following steps toward a precision medicine approach in patients affected by intrahepatic cholangiocarcinoma. ABSTRACT: Standard imaging cannot assess the pathology details of intrahepatic cholangiocarcinoma (ICC). We investigated whether CT-based radiomics may improve the prediction of tumor characteristics. All consecutive patients undergoing liver resection for ICC (2009-2019) in six high-volume centers were evaluated for inclusion. On the preoperative CT, we segmented the ICC (Tumor-VOI, i.e., volume-of-interest) and a 5-mm parenchyma rim around the tumor (Margin-VOI). We considered two types of pathology data: tumor grading (G) and microvascular invasion (MVI). The predictive models were internally validated. Overall, 244 patients were analyzed: 82 (34%) had G3 tumors and 139 (57%) had MVI. For G3 prediction, the clinical model had an AUC = 0.69 and an Accuracy = 0.68 at internal cross-validation. The addition of radiomic features extracted from the portal phase of CT improved the model performance (Clinical data+Tumor-VOI: AUC = 0.73/Accuracy = 0.72; +Tumor-/Margin-VOI: AUC = 0.77/Accuracy = 0.77). Also for MVI prediction, the addition of portal phase radiomics improved the model performance (Clinical data: AUC = 0.75/Accuracy = 0.70; +Tumor-VOI: AUC = 0.82/Accuracy = 0.73; +Tumor-/Margin-VOI: AUC = 0.82/Accuracy = 0.75). The permutation tests confirmed that a combined clinical–radiomic model outperforms a purely clinical one (p < 0.05). The addition of the textural features extracted from the arterial phase had no impact. In conclusion, the radiomic features of the tumor and peritumoral tissue extracted from the portal phase of preoperative CT improve the prediction of ICC grading and MVI.
format Online
Article
Text
id pubmed-10486795
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104867952023-09-09 Radiomic Analysis of Intrahepatic Cholangiocarcinoma: Non-Invasive Prediction of Pathology Data: A Multicenter Study to Develop a Clinical–Radiomic Model Fiz, Francesco Rossi, Noemi Langella, Serena Ruzzenente, Andrea Serenari, Matteo Ardito, Francesco Cucchetti, Alessandro Gallo, Teresa Zamboni, Giulia Mosconi, Cristina Boldrini, Luca Mirarchi, Mariateresa Cirillo, Stefano De Bellis, Mario Pecorella, Ilaria Russolillo, Nadia Borzi, Martina Vara, Giulio Mele, Caterina Ercolani, Giorgio Giuliante, Felice Ravaioli, Matteo Guglielmi, Alfredo Ferrero, Alessandro Sollini, Martina Chiti, Arturo Torzilli, Guido Ieva, Francesca Viganò, Luca Cancers (Basel) Article SIMPLE SUMMARY: Intrahepatic cholangiocarcinoma is a disease with increasing incidence and poor prognosis. The clinicians have a limited capability to predict tumor behavior because the strongest predictors of survival are the pathology data that, unfortunately, can be determined only after surgery. Recently, radiomics, i.e., the mathematical analysis of imaging modalities, led to a major improvement in the non-invasive prediction of microscopic characteristics of several tumors. In this multicenter study, we collected a large number of patients affected by intrahepatic cholangiocarcinoma and we demonstrated that the radiomic data of the tumor and peritumoral tissue extracted from the computed tomography at diagnosis have a strong association with tumor grading and microscopic vascular invasion, which are two major biomarkers of tumor aggressiveness. The combination of radiomic and clinical data maximizes the accuracy of prediction. The integration of radiomics into clinical decision processes is probably one of the following steps toward a precision medicine approach in patients affected by intrahepatic cholangiocarcinoma. ABSTRACT: Standard imaging cannot assess the pathology details of intrahepatic cholangiocarcinoma (ICC). We investigated whether CT-based radiomics may improve the prediction of tumor characteristics. All consecutive patients undergoing liver resection for ICC (2009-2019) in six high-volume centers were evaluated for inclusion. On the preoperative CT, we segmented the ICC (Tumor-VOI, i.e., volume-of-interest) and a 5-mm parenchyma rim around the tumor (Margin-VOI). We considered two types of pathology data: tumor grading (G) and microvascular invasion (MVI). The predictive models were internally validated. Overall, 244 patients were analyzed: 82 (34%) had G3 tumors and 139 (57%) had MVI. For G3 prediction, the clinical model had an AUC = 0.69 and an Accuracy = 0.68 at internal cross-validation. The addition of radiomic features extracted from the portal phase of CT improved the model performance (Clinical data+Tumor-VOI: AUC = 0.73/Accuracy = 0.72; +Tumor-/Margin-VOI: AUC = 0.77/Accuracy = 0.77). Also for MVI prediction, the addition of portal phase radiomics improved the model performance (Clinical data: AUC = 0.75/Accuracy = 0.70; +Tumor-VOI: AUC = 0.82/Accuracy = 0.73; +Tumor-/Margin-VOI: AUC = 0.82/Accuracy = 0.75). The permutation tests confirmed that a combined clinical–radiomic model outperforms a purely clinical one (p < 0.05). The addition of the textural features extracted from the arterial phase had no impact. In conclusion, the radiomic features of the tumor and peritumoral tissue extracted from the portal phase of preoperative CT improve the prediction of ICC grading and MVI. MDPI 2023-08-22 /pmc/articles/PMC10486795/ /pubmed/37686480 http://dx.doi.org/10.3390/cancers15174204 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fiz, Francesco
Rossi, Noemi
Langella, Serena
Ruzzenente, Andrea
Serenari, Matteo
Ardito, Francesco
Cucchetti, Alessandro
Gallo, Teresa
Zamboni, Giulia
Mosconi, Cristina
Boldrini, Luca
Mirarchi, Mariateresa
Cirillo, Stefano
De Bellis, Mario
Pecorella, Ilaria
Russolillo, Nadia
Borzi, Martina
Vara, Giulio
Mele, Caterina
Ercolani, Giorgio
Giuliante, Felice
Ravaioli, Matteo
Guglielmi, Alfredo
Ferrero, Alessandro
Sollini, Martina
Chiti, Arturo
Torzilli, Guido
Ieva, Francesca
Viganò, Luca
Radiomic Analysis of Intrahepatic Cholangiocarcinoma: Non-Invasive Prediction of Pathology Data: A Multicenter Study to Develop a Clinical–Radiomic Model
title Radiomic Analysis of Intrahepatic Cholangiocarcinoma: Non-Invasive Prediction of Pathology Data: A Multicenter Study to Develop a Clinical–Radiomic Model
title_full Radiomic Analysis of Intrahepatic Cholangiocarcinoma: Non-Invasive Prediction of Pathology Data: A Multicenter Study to Develop a Clinical–Radiomic Model
title_fullStr Radiomic Analysis of Intrahepatic Cholangiocarcinoma: Non-Invasive Prediction of Pathology Data: A Multicenter Study to Develop a Clinical–Radiomic Model
title_full_unstemmed Radiomic Analysis of Intrahepatic Cholangiocarcinoma: Non-Invasive Prediction of Pathology Data: A Multicenter Study to Develop a Clinical–Radiomic Model
title_short Radiomic Analysis of Intrahepatic Cholangiocarcinoma: Non-Invasive Prediction of Pathology Data: A Multicenter Study to Develop a Clinical–Radiomic Model
title_sort radiomic analysis of intrahepatic cholangiocarcinoma: non-invasive prediction of pathology data: a multicenter study to develop a clinical–radiomic model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486795/
https://www.ncbi.nlm.nih.gov/pubmed/37686480
http://dx.doi.org/10.3390/cancers15174204
work_keys_str_mv AT fizfrancesco radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT rossinoemi radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT langellaserena radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT ruzzenenteandrea radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT serenarimatteo radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT arditofrancesco radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT cucchettialessandro radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT galloteresa radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT zambonigiulia radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT mosconicristina radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT boldriniluca radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT mirarchimariateresa radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT cirillostefano radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT debellismario radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT pecorellailaria radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT russolillonadia radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT borzimartina radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT varagiulio radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT melecaterina radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT ercolanigiorgio radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT giuliantefelice radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT ravaiolimatteo radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT guglielmialfredo radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT ferreroalessandro radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT sollinimartina radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT chitiarturo radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT torzilliguido radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT ievafrancesca radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel
AT viganoluca radiomicanalysisofintrahepaticcholangiocarcinomanoninvasivepredictionofpathologydataamulticenterstudytodevelopaclinicalradiomicmodel