Cargando…

Phage Endolysins: Advances in the World of Food Safety

As antimicrobial resistance continues to escalate, the exploration of alternative approaches to safeguard food safety becomes more crucial than ever. Phage endolysins are enzymes derived from phages that possess the ability to break down bacterial cell walls. They have emerged as promising antibacte...

Descripción completa

Detalles Bibliográficos
Autores principales: Nazir, Amina, Xu, Xiaohui, Liu, Yuqing, Chen, Yibao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486871/
https://www.ncbi.nlm.nih.gov/pubmed/37681901
http://dx.doi.org/10.3390/cells12172169
Descripción
Sumario:As antimicrobial resistance continues to escalate, the exploration of alternative approaches to safeguard food safety becomes more crucial than ever. Phage endolysins are enzymes derived from phages that possess the ability to break down bacterial cell walls. They have emerged as promising antibacterial agents suitable for integration into food processing systems. Their application as food preservatives can effectively regulate pathogens, thus contributing to an overall improvement in food safety. This review summarizes the latest techniques considering endolysins’ potential for food safety. These techniques include native and engineered endolysins for controlling bacterial contamination at different points within the food production chain. However, we find that characterizing endolysins through in vitro methods proves to be time consuming and resource intensive. Alternatively, the emergence of advanced high-throughput sequencing technology necessitates the creation of a robust computational framework to efficiently characterize recently identified endolysins, paving the way for future research. Machine learning encompasses potent tools capable of analyzing intricate datasets and pattern recognition. This study briefly reviewed the use of these industry 4.0 technologies for advancing the research in food industry. We aimed to provide current status of endolysins in food industry and new insights by implementing these industry 4.0 strategies revolutionizes endolysin development. It will enhance food safety, customization, efficiency, transparency, and collaboration while reducing regulatory hurdles and ensuring timely product availability.