Cargando…
Applications of CRISPR Technology to Breast Cancer and Triple Negative Breast Cancer Research
SIMPLE SUMMARY: The technique of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) has revolutionised cancer research, including breast cancer and triple negative breast cancer (TNBC). By employing this technique, scientists can now better model these diseases, discover unknown gene...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486929/ https://www.ncbi.nlm.nih.gov/pubmed/37686639 http://dx.doi.org/10.3390/cancers15174364 |
Sumario: | SIMPLE SUMMARY: The technique of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) has revolutionised cancer research, including breast cancer and triple negative breast cancer (TNBC). By employing this technique, scientists can now better model these diseases, discover unknown genes that play a role in cancer progression, facilitate a more sensitive and earlier diagnosis of breast cancer and triple negative breast cancer (TNBC), and even determine if there is the possibility of providing more selective and efficient treatments. To do so, scientists are trying to optimise the distribution of the CRISPR components in the tumour by using several methods that we have listed. In this work, we have also highlighted the weak points and the future perspectives that CRISPR possesses. Undoubtedly, CRISPR technology can improve many aspects of breast cancer/TNBC research. ABSTRACT: Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has transformed oncology research in many ways. Breast cancer is the most prevalent malignancy globally and triple negative breast cancer (TNBC) is one of the most aggressive subtypes with numerous challenges still to be faced. In this work, we have explained what CRISPR consists of and listed its applications in breast cancer while focusing on TNBC research. These are disease modelling, the search for novel genes involved in tumour progression, sensitivity to drugs and immunotherapy response, tumour fitness, diagnosis, and treatment. Additionally, we have listed the current delivery methods employed for the delivery of CRISPR systems in vivo. Lastly, we have highlighted the limitations that CRISPR technology is subject to and the future directions that we envisage. Overall, we have provided a round summary of the aspects concerning CRISPR in breast cancer/TNBC research. |
---|