Cargando…
The Emerging Role of Hypoxic Training for the Equine Athlete
SIMPLE SUMMARY: The concept of altitude training became popular among human athletes following the 1968 Olympic Games, at which African runners were particularly successful. Culminating from these observations was the concept that during exercise training, local tissue hypoxia is an important adapti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486977/ https://www.ncbi.nlm.nih.gov/pubmed/37685063 http://dx.doi.org/10.3390/ani13172799 |
Sumario: | SIMPLE SUMMARY: The concept of altitude training became popular among human athletes following the 1968 Olympic Games, at which African runners were particularly successful. Culminating from these observations was the concept that during exercise training, local tissue hypoxia is an important adaptive stress for muscle that ultimately leads to superior physiological adaptations and enhanced endurance performance. The application of the concept of hypoxic training to the Thoroughbred horse is new, and now, with purpose-built hypoxic chambers, there has been a growing interest in its use in equine training programs. ABSTRACT: This paper provides a comprehensive discussion on the physiological impacts of hypoxic training, its benefits to endurance performance, and a rationale for utilizing it to improve performance in the equine athlete. All exercise-induced training adaptations are governed by genetics. Exercise prescriptions can be tailored to elicit the desired physiological adaptations. Although the application of hypoxic stimuli on its own is not ideal to promote favorable molecular responses, exercise training under hypoxic conditions provides an optimal environment for maximizing physiological adaptations to enhance endurance performance. The combination of exercise training and hypoxia increases the activity of the hypoxia-inducible factor (HIF) pathway compared to training under normoxic conditions. Hypoxia-inducible factor-1 alpha (HIF-1α) is known as a master regulator of the expression of genes since over 100 genes are responsive to HIF-1α. For instance, HIF-1-inducible genes include those critical to erythropoiesis, angiogenesis, glucose metabolism, mitochondrial biogenesis, and glucose transport, all of which are intergral in physiological adaptations for endurance performance. Further, hypoxic training could conceivably have a role in equine rehabilitation when high-impact training is contraindicated but a quality training stimulus is desired. This is achievable through purpose-built equine motorized treadmills inside commercial hypoxic chambers. |
---|