Cargando…
Predicting Future Incidences of Cardiac Arrhythmias Using Discrete Heartbeats from Normal Sinus Rhythm ECG Signals via Deep Learning Methods
This study aims to compare the effectiveness of using discrete heartbeats versus an entire 12-lead electrocardiogram (ECG) as the input for predicting future occurrences of arrhythmia and atrial fibrillation using deep learning models. Experiments were conducted using two types of inputs: a combinat...
Autores principales: | Kim, Yehyun, Lee, Myeonggyu, Yoon, Jaeung, Kim, Yeji, Min, Hyunseok, Cho, Hyungjoo, Park, Junbeom, Shin, Taeyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487044/ https://www.ncbi.nlm.nih.gov/pubmed/37685387 http://dx.doi.org/10.3390/diagnostics13172849 |
Ejemplares similares
-
Machine Algorithm for Heartbeat Monitoring and Arrhythmia Detection Based on ECG Systems
por: Taloba, Ahmed I., et al.
Publicado: (2021) -
Regular heartbeat rhythm at the heartbeat initiation stage is essential for normal cardiogenesis at low temperature
por: Watanabe-Asaka, Tomomi, et al.
Publicado: (2014) -
Heartbeat Cycle Length Detection by a Ballistocardiographic Sensor in Atrial Fibrillation and Sinus Rhythm
por: Zink, Matthias Daniel, et al.
Publicado: (2015) -
Combining Rhythm Information between Heartbeats and BiLSTM-Treg Algorithm for Intelligent Beat Classification of Arrhythmia
por: Yao, Jinliang, et al.
Publicado: (2021) -
Electrocardiogram Heartbeat Classification for Arrhythmias and Myocardial Infarction
por: Pham, Bach-Tung, et al.
Publicado: (2023)