Cargando…
Evaluation of Augmentation Methods in Classifying Autism Spectrum Disorders from fMRI Data with 3D Convolutional Neural Networks
Classifying subjects as healthy or diseased using neuroimaging data has gained a lot of attention during the last 10 years, and recently, different deep learning approaches have been used. Despite this fact, there has not been any investigation regarding how 3D augmentation can help to create larger...
Autores principales: | Jönemo, Johan, Abramian, David, Eklund, Anders |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487086/ https://www.ncbi.nlm.nih.gov/pubmed/37685311 http://dx.doi.org/10.3390/diagnostics13172773 |
Ejemplares similares
-
Late fMRI Response Components Are Altered in Autism Spectrum Disorder
por: Murray, Scott O., et al.
Publicado: (2020) -
Decision flexibilities in autism spectrum disorder: an fMRI study of moral dilemmas
por: Tei, Shisei, et al.
Publicado: (2022) -
Diffusion-informed spatial smoothing of fMRI data in white matter using spectral graph filters
por: Abramian, David, et al.
Publicado: (2021) -
Classifying Autism Spectrum Disorder Using the Temporal Statistics of Resting-State Functional MRI Data With 3D Convolutional Neural Networks
por: Thomas, Rajat Mani, et al.
Publicado: (2020) -
Neural substrates underlying effortful control deficit in autism spectrum disorder: a meta-analysis of fMRI studies
por: Krishnamurthy, Karthikeyan, et al.
Publicado: (2022)