Cargando…
Adversarial Attacks on Medical Image Classification
SIMPLE SUMMARY: As we increasingly rely on advanced imaging for medical diagnosis, it’s vital that our computer programs can accurately interpret these images. Even a single mistaken pixel can lead to wrong predictions, potentially causing incorrect medical decisions. This study looks into how these...
Autores principales: | Tsai, Min-Jen, Lin, Ping-Yi, Lee, Ming-En |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487122/ https://www.ncbi.nlm.nih.gov/pubmed/37686504 http://dx.doi.org/10.3390/cancers15174228 |
Ejemplares similares
-
Universal adversarial attacks on deep neural networks for medical image classification
por: Hirano, Hokuto, et al.
Publicado: (2021) -
Image classification adversarial attack with improved resizing transformation and ensemble models
por: Li, Chenwei, et al.
Publicado: (2023) -
ELAA: An Ensemble-Learning-Based Adversarial Attack Targeting Image-Classification Model
por: Fu, Zhongwang, et al.
Publicado: (2023) -
Natural Images Allow Universal Adversarial Attacks on Medical Image Classification Using Deep Neural Networks with Transfer Learning
por: Minagi, Akinori, et al.
Publicado: (2022) -
Adversarial attacks and adversarial robustness in computational pathology
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022)