Cargando…

A three‐dimensional method for morphological analysis and flow velocity estimation in microvasculature on‐a‐chip

Three‐dimensional (3D) imaging techniques (e.g., confocal microscopy) are commonly used to visualize in vitro models, especially microvasculature on‐a‐chip. Conversely, 3D analysis is not the standard method to extract quantitative information from those models. We developed the μVES algorithm to an...

Descripción completa

Detalles Bibliográficos
Autores principales: Rota, Alberto, Possenti, Luca, Offeddu, Giovanni S., Senesi, Martina, Stucchi, Adelaide, Venturelli, Irene, Rancati, Tiziana, Zunino, Paolo, Kamm, Roger D., Costantino, Maria Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487341/
https://www.ncbi.nlm.nih.gov/pubmed/37693050
http://dx.doi.org/10.1002/btm2.10557
_version_ 1785103216065642496
author Rota, Alberto
Possenti, Luca
Offeddu, Giovanni S.
Senesi, Martina
Stucchi, Adelaide
Venturelli, Irene
Rancati, Tiziana
Zunino, Paolo
Kamm, Roger D.
Costantino, Maria Laura
author_facet Rota, Alberto
Possenti, Luca
Offeddu, Giovanni S.
Senesi, Martina
Stucchi, Adelaide
Venturelli, Irene
Rancati, Tiziana
Zunino, Paolo
Kamm, Roger D.
Costantino, Maria Laura
author_sort Rota, Alberto
collection PubMed
description Three‐dimensional (3D) imaging techniques (e.g., confocal microscopy) are commonly used to visualize in vitro models, especially microvasculature on‐a‐chip. Conversely, 3D analysis is not the standard method to extract quantitative information from those models. We developed the μVES algorithm to analyze vascularized in vitro models leveraging 3D data. It computes morphological parameters (geometry, diameter, length, tortuosity, eccentricity) and intravascular flow velocity. μVES application to microfluidic vascularized in vitro models shows that they successfully replicate functional features of the microvasculature in vivo in terms of intravascular fluid flow velocity. However, wall shear stress is lower compared to in vivo references. The morphological analysis also highlights the model's physiological similarities (vessel length and tortuosity) and shortcomings (vessel radius and surface‐over‐volume ratio). The addition of the third dimension in our analysis produced significant differences in the metrics assessed compared to 2D estimations. It enabled the computation of new indices, such as vessel eccentricity. These μVES capabilities can find application in analyses of different in vitro vascular models, as well as in vivo and ex vivo microvasculature.
format Online
Article
Text
id pubmed-10487341
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-104873412023-09-09 A three‐dimensional method for morphological analysis and flow velocity estimation in microvasculature on‐a‐chip Rota, Alberto Possenti, Luca Offeddu, Giovanni S. Senesi, Martina Stucchi, Adelaide Venturelli, Irene Rancati, Tiziana Zunino, Paolo Kamm, Roger D. Costantino, Maria Laura Bioeng Transl Med Regular Issue Articles Three‐dimensional (3D) imaging techniques (e.g., confocal microscopy) are commonly used to visualize in vitro models, especially microvasculature on‐a‐chip. Conversely, 3D analysis is not the standard method to extract quantitative information from those models. We developed the μVES algorithm to analyze vascularized in vitro models leveraging 3D data. It computes morphological parameters (geometry, diameter, length, tortuosity, eccentricity) and intravascular flow velocity. μVES application to microfluidic vascularized in vitro models shows that they successfully replicate functional features of the microvasculature in vivo in terms of intravascular fluid flow velocity. However, wall shear stress is lower compared to in vivo references. The morphological analysis also highlights the model's physiological similarities (vessel length and tortuosity) and shortcomings (vessel radius and surface‐over‐volume ratio). The addition of the third dimension in our analysis produced significant differences in the metrics assessed compared to 2D estimations. It enabled the computation of new indices, such as vessel eccentricity. These μVES capabilities can find application in analyses of different in vitro vascular models, as well as in vivo and ex vivo microvasculature. John Wiley & Sons, Inc. 2023-06-11 /pmc/articles/PMC10487341/ /pubmed/37693050 http://dx.doi.org/10.1002/btm2.10557 Text en © 2023 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Regular Issue Articles
Rota, Alberto
Possenti, Luca
Offeddu, Giovanni S.
Senesi, Martina
Stucchi, Adelaide
Venturelli, Irene
Rancati, Tiziana
Zunino, Paolo
Kamm, Roger D.
Costantino, Maria Laura
A three‐dimensional method for morphological analysis and flow velocity estimation in microvasculature on‐a‐chip
title A three‐dimensional method for morphological analysis and flow velocity estimation in microvasculature on‐a‐chip
title_full A three‐dimensional method for morphological analysis and flow velocity estimation in microvasculature on‐a‐chip
title_fullStr A three‐dimensional method for morphological analysis and flow velocity estimation in microvasculature on‐a‐chip
title_full_unstemmed A three‐dimensional method for morphological analysis and flow velocity estimation in microvasculature on‐a‐chip
title_short A three‐dimensional method for morphological analysis and flow velocity estimation in microvasculature on‐a‐chip
title_sort three‐dimensional method for morphological analysis and flow velocity estimation in microvasculature on‐a‐chip
topic Regular Issue Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487341/
https://www.ncbi.nlm.nih.gov/pubmed/37693050
http://dx.doi.org/10.1002/btm2.10557
work_keys_str_mv AT rotaalberto athreedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT possentiluca athreedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT offeddugiovannis athreedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT senesimartina athreedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT stucchiadelaide athreedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT venturelliirene athreedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT rancatitiziana athreedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT zuninopaolo athreedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT kammrogerd athreedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT costantinomarialaura athreedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT rotaalberto threedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT possentiluca threedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT offeddugiovannis threedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT senesimartina threedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT stucchiadelaide threedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT venturelliirene threedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT rancatitiziana threedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT zuninopaolo threedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT kammrogerd threedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip
AT costantinomarialaura threedimensionalmethodformorphologicalanalysisandflowvelocityestimationinmicrovasculatureonachip