Cargando…
Application of Novel Transcription Factor Machine Learning Model and Targeted Drug Combination Therapy Strategy in Triple Negative Breast Cancer
Transcription factors (TFs) have been shown to play a key role in the occurrence and development of tumors, including triple-negative breast cancer (TNBC), with a worse prognosis. Machine learning is widely used for establishing prediction models and screening key tumor drivers. Current studies lack...
Autores principales: | Pang, Jianyu, Li, Huimin, Zhang, Xiaoling, Luo, Zhengwei, Chen, Yongzhi, Zhao, Haijie, Lv, Handong, Zheng, Hongan, Fu, Zhiqian, Tang, Wenru, Sheng, Miaomiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487460/ https://www.ncbi.nlm.nih.gov/pubmed/37686305 http://dx.doi.org/10.3390/ijms241713497 |
Ejemplares similares
-
Stemness signature and targeted therapeutic drugs identification for Triple Negative Breast Cancer
por: Gul, Samina, et al.
Publicado: (2023) -
The Value of the Stemness Index in Ovarian Cancer Prognosis
por: Yuan, Hongjun, et al.
Publicado: (2022) -
Bioinformatics Analysis and Structure of Gastric Cancer Prognosis Model Based on Lipid Metabolism and Immune Microenvironment
por: Chen, Yongzhi, et al.
Publicado: (2022) -
Integrating Single-cell RNA-seq to construct a Neutrophil prognostic model for predicting immune responses in non-small cell lung cancer
por: Pang, Jianyu, et al.
Publicado: (2022) -
Single-cell and bulk RNA-sequencing analysis to predict the role and clinical value of CD36 in lung squamous cell carcinoma
por: Wang, Hui, et al.
Publicado: (2023)