Cargando…
UPR-Induced miR-616 Inhibits Human Breast Cancer Cell Growth and Migration by Targeting c-MYC
C/EBP homologous protein (CHOP), also known as growth arrest and DNA damage-inducible protein 153 (GADD153), belongs to the CCAAT/enhancer-binding protein (C/EBP) family. CHOP expression is induced by unfolded protein response (UPR), and sustained CHOP activation acts as a pivotal trigger for ER str...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487498/ https://www.ncbi.nlm.nih.gov/pubmed/37685841 http://dx.doi.org/10.3390/ijms241713034 |
_version_ | 1785103257918504960 |
---|---|
author | Arabkari, Vahid Sultana, Afrin Barua, David Webber, Mark Smith, Terry Gupta, Ananya Gupta, Sanjeev |
author_facet | Arabkari, Vahid Sultana, Afrin Barua, David Webber, Mark Smith, Terry Gupta, Ananya Gupta, Sanjeev |
author_sort | Arabkari, Vahid |
collection | PubMed |
description | C/EBP homologous protein (CHOP), also known as growth arrest and DNA damage-inducible protein 153 (GADD153), belongs to the CCAAT/enhancer-binding protein (C/EBP) family. CHOP expression is induced by unfolded protein response (UPR), and sustained CHOP activation acts as a pivotal trigger for ER stress-induced apoptosis. MicroRNA-616 is located within an intron of the CHOP gene. However, the regulation of miR-616 expression during UPR and its function in breast cancer is not clearly understood. Here we show that the expression of miR-616 and CHOP (host gene of miR-616) is downregulated in human breast cancer. Both miR-5p/-3p arms of miR-616 are expressed with levels of the 5p arm higher than the 3p arm. During conditions of ER stress, the expression of miR-616-5p and miR-616-3p arms was concordantly increased primarily through the PERK pathway. Our results show that ectopic expression of miR-616 significantly suppressed cell proliferation and colony formation, whereas knockout of miR-616 increased it. We found that miR-616 represses c-MYC expression via binding sites located in its protein coding region. Furthermore, we show that miR-616 exerted growth inhibitory effects on cells by suppressing c-MYC expression. Our results establish a new role for the CHOP locus by providing evidence that miR-616 can inhibit cell proliferation by targeting c-MYC. In summary, our results suggest a dual function for the CHOP locus, where CHOP protein and miR-616 can cooperate to inhibit cancer progression. |
format | Online Article Text |
id | pubmed-10487498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104874982023-09-09 UPR-Induced miR-616 Inhibits Human Breast Cancer Cell Growth and Migration by Targeting c-MYC Arabkari, Vahid Sultana, Afrin Barua, David Webber, Mark Smith, Terry Gupta, Ananya Gupta, Sanjeev Int J Mol Sci Article C/EBP homologous protein (CHOP), also known as growth arrest and DNA damage-inducible protein 153 (GADD153), belongs to the CCAAT/enhancer-binding protein (C/EBP) family. CHOP expression is induced by unfolded protein response (UPR), and sustained CHOP activation acts as a pivotal trigger for ER stress-induced apoptosis. MicroRNA-616 is located within an intron of the CHOP gene. However, the regulation of miR-616 expression during UPR and its function in breast cancer is not clearly understood. Here we show that the expression of miR-616 and CHOP (host gene of miR-616) is downregulated in human breast cancer. Both miR-5p/-3p arms of miR-616 are expressed with levels of the 5p arm higher than the 3p arm. During conditions of ER stress, the expression of miR-616-5p and miR-616-3p arms was concordantly increased primarily through the PERK pathway. Our results show that ectopic expression of miR-616 significantly suppressed cell proliferation and colony formation, whereas knockout of miR-616 increased it. We found that miR-616 represses c-MYC expression via binding sites located in its protein coding region. Furthermore, we show that miR-616 exerted growth inhibitory effects on cells by suppressing c-MYC expression. Our results establish a new role for the CHOP locus by providing evidence that miR-616 can inhibit cell proliferation by targeting c-MYC. In summary, our results suggest a dual function for the CHOP locus, where CHOP protein and miR-616 can cooperate to inhibit cancer progression. MDPI 2023-08-22 /pmc/articles/PMC10487498/ /pubmed/37685841 http://dx.doi.org/10.3390/ijms241713034 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Arabkari, Vahid Sultana, Afrin Barua, David Webber, Mark Smith, Terry Gupta, Ananya Gupta, Sanjeev UPR-Induced miR-616 Inhibits Human Breast Cancer Cell Growth and Migration by Targeting c-MYC |
title | UPR-Induced miR-616 Inhibits Human Breast Cancer Cell Growth and Migration by Targeting c-MYC |
title_full | UPR-Induced miR-616 Inhibits Human Breast Cancer Cell Growth and Migration by Targeting c-MYC |
title_fullStr | UPR-Induced miR-616 Inhibits Human Breast Cancer Cell Growth and Migration by Targeting c-MYC |
title_full_unstemmed | UPR-Induced miR-616 Inhibits Human Breast Cancer Cell Growth and Migration by Targeting c-MYC |
title_short | UPR-Induced miR-616 Inhibits Human Breast Cancer Cell Growth and Migration by Targeting c-MYC |
title_sort | upr-induced mir-616 inhibits human breast cancer cell growth and migration by targeting c-myc |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487498/ https://www.ncbi.nlm.nih.gov/pubmed/37685841 http://dx.doi.org/10.3390/ijms241713034 |
work_keys_str_mv | AT arabkarivahid uprinducedmir616inhibitshumanbreastcancercellgrowthandmigrationbytargetingcmyc AT sultanaafrin uprinducedmir616inhibitshumanbreastcancercellgrowthandmigrationbytargetingcmyc AT baruadavid uprinducedmir616inhibitshumanbreastcancercellgrowthandmigrationbytargetingcmyc AT webbermark uprinducedmir616inhibitshumanbreastcancercellgrowthandmigrationbytargetingcmyc AT smithterry uprinducedmir616inhibitshumanbreastcancercellgrowthandmigrationbytargetingcmyc AT guptaananya uprinducedmir616inhibitshumanbreastcancercellgrowthandmigrationbytargetingcmyc AT guptasanjeev uprinducedmir616inhibitshumanbreastcancercellgrowthandmigrationbytargetingcmyc |