Cargando…

Chlorogenic Acid Alleviates LPS-Induced Inflammation and Oxidative Stress by Modulating CD36/AMPK/PGC-1α in RAW264.7 Macrophages

Chlorogenic acid (CGA) is a bioactive substance with anti-inflammatory activities. Clusters of CD36 have been suggested to be widely involved in inflammatory damage. However, the mechanism of CGA protecting against LPS-induced inflammation involving the CD36 regulation is unclear. Here, we demonstra...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Tiantian, Zhang, Zhiguo, Liu, Jinyu, Chen, Li, Tian, Yong, Xu, Wenwu, Zeng, Tao, Wu, Weicheng, Lu, Lizhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487601/
https://www.ncbi.nlm.nih.gov/pubmed/37686324
http://dx.doi.org/10.3390/ijms241713516
Descripción
Sumario:Chlorogenic acid (CGA) is a bioactive substance with anti-inflammatory activities. Clusters of CD36 have been suggested to be widely involved in inflammatory damage. However, the mechanism of CGA protecting against LPS-induced inflammation involving the CD36 regulation is unclear. Here, we demonstrated that CGA protected against LPS-induced cell death and decreased the production of ROS. Moreover, the SOD, CAT, and GSH-Px activities were also upregulated in CGA-treated cells during LPS stimulation. CGA reduced COX-2 and iNOS expression and IL-1β, IL-6, and TNF-α secretion in LPS-stimulated RAW264.7 macrophages. In addition, CGA treatment widely involved in immune-related signaling pathways, including NF-κB signaling, NOD-like receptor signaling, and IL-17 signaling using transcriptomic analysis and CD36 also markedly reduced during CGA pretreatment in LPS-induced RAW264.7 cells. Furthermore, the CD36 inhibitor SSO attenuated inflammation and oxidative stress by enabling activation of the AMPK/PGC-1α cascade. These results indicate that CGA might provide benefits for the regulation of inflammatory diseases by modulating CD36/AMPK/PGC-1α to alleviate oxidative stress.