Cargando…

Visible-Light-Activated Carbon Dot Photocatalyst for ROS-Mediated Inhibition of Algae Growth

The growing occurrence of detrimental algal blooms resulting from industrial and agricultural activities emphasizes the urgency of implementing efficient removal strategies. In this study, we have successfully synthesized stable and biocompatible carbon dots (R-CDs) capable of generating reactive ox...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Jun, Xu, Zhibin, Li, Hao, Chen, Yu, Guo, Jiaqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487890/
https://www.ncbi.nlm.nih.gov/pubmed/37686316
http://dx.doi.org/10.3390/ijms241713509
Descripción
Sumario:The growing occurrence of detrimental algal blooms resulting from industrial and agricultural activities emphasizes the urgency of implementing efficient removal strategies. In this study, we have successfully synthesized stable and biocompatible carbon dots (R-CDs) capable of generating reactive oxygen species (ROS) upon exposure to natural light irradiation. Phaeocystis globosa Scherffel (PGS) was selected as a representative model for conducting anti-algal experiments. Remarkably, in the presence of R-CDs, the complete eradication of harmful algae within a simulated light exposure period of 27 h was achieved. Furthermore, fluorescence lifetime imaging microscopy (FLIM) was first employed to study the physiological processes involved in the oxidative stress induced by PGS when subjected to ROS attack. The findings of this study demonstrate the potential of R-CDs as a highly promising anti-algal agent. This elucidation of the mechanism contributes to a comprehensive understanding of the efficacy and effectiveness of such agents in combating algal growth, further inspiring the development of other anti-algal agents.