Cargando…
Brain Dopamine–Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major co...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487918/ https://www.ncbi.nlm.nih.gov/pubmed/37686060 http://dx.doi.org/10.3390/ijms241713255 |
_version_ | 1785103355351138304 |
---|---|
author | Cincotta, Anthony H. |
author_facet | Cincotta, Anthony H. |
author_sort | Cincotta, Anthony H. |
collection | PubMed |
description | Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine—a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects. |
format | Online Article Text |
id | pubmed-10487918 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104879182023-09-09 Brain Dopamine–Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects Cincotta, Anthony H. Int J Mol Sci Review Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine—a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects. MDPI 2023-08-26 /pmc/articles/PMC10487918/ /pubmed/37686060 http://dx.doi.org/10.3390/ijms241713255 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Cincotta, Anthony H. Brain Dopamine–Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects |
title | Brain Dopamine–Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects |
title_full | Brain Dopamine–Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects |
title_fullStr | Brain Dopamine–Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects |
title_full_unstemmed | Brain Dopamine–Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects |
title_short | Brain Dopamine–Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects |
title_sort | brain dopamine–clock interactions regulate cardiometabolic physiology: mechanisms of the observed cardioprotective effects of circadian-timed bromocriptine-qr therapy in type 2 diabetes subjects |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487918/ https://www.ncbi.nlm.nih.gov/pubmed/37686060 http://dx.doi.org/10.3390/ijms241713255 |
work_keys_str_mv | AT cincottaanthonyh braindopamineclockinteractionsregulatecardiometabolicphysiologymechanismsoftheobservedcardioprotectiveeffectsofcircadiantimedbromocriptineqrtherapyintype2diabetessubjects |