Cargando…

Underfeeding Alters Brain Tissue Synthesis Rate in a Rat Brain Injury Model

Brain injuries (BI) are highly disruptive, often having long lasting effects. Inadequate standard of care (SOC) energy support in the hospital leads to dietary energy deficiencies in BI patients. However, it is unclear how underfeeding (UF) affects protein synthesis post-BI. Therefore, in a rat mode...

Descripción completa

Detalles Bibliográficos
Autores principales: Curl, Casey C., Leija, Robert G., Arevalo, Jose A., Osmond, Adam D., Duong, Justin J., Kaufer, Daniela, Horning, Michael A., Brooks, George A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487942/
https://www.ncbi.nlm.nih.gov/pubmed/37686002
http://dx.doi.org/10.3390/ijms241713195
Descripción
Sumario:Brain injuries (BI) are highly disruptive, often having long lasting effects. Inadequate standard of care (SOC) energy support in the hospital leads to dietary energy deficiencies in BI patients. However, it is unclear how underfeeding (UF) affects protein synthesis post-BI. Therefore, in a rat model, we addressed the issue of UF on the protein fractional synthesis rate (fSR) post-BI. Compared to ad libitum (AL)-fed animals, we found that UF decreased protein synthesis in hind-limb skeletal muscle and cortical mitochondrial and structural proteins (p ≤ 0.05). BI significantly increased protein synthesis in the left and right cortices (p ≤ 0.05), but suppressed protein synthesis in the cerebellum (p ≤ 0.05) as compared to non-injured sham animals. Compared to underfeeding alone, UF in conjunction with BI (UF+BI) caused increased protein synthesis rates in mitochondrial, cytosolic, and whole-tissue proteins of the cortical brain regions. The increased rates of protein synthesis found in the UF+BI group were mitigated by AL feeding, demonstrating that caloric adequacy alleviates the effects of BI on protein dynamics in cortical and cerebellar brain regions. This research provides evidence that underfeeding has a negative impact on brain healing post-BI and that protein reserves in uninjured tissues are mobilized to support cortical tissue repair following BI.