Cargando…

Identifying Premature Ventricular Complexes from Outflow Tracts Based on PVC Configuration: A Machine Learning Approach

Background: Current inferences about the site of origin (SOO) of premature ventricular complexes (PVC) from the surface ECG have not been subjected to newer data analytic techniques that identify signals that are not recognized by visual inspection. Aims: The objective of this study was to apply dat...

Descripción completa

Detalles Bibliográficos
Autores principales: Bajaj, Sargun, Bennett, Matthew T., Rabkin, Simon W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487978/
https://www.ncbi.nlm.nih.gov/pubmed/37685626
http://dx.doi.org/10.3390/jcm12175558
Descripción
Sumario:Background: Current inferences about the site of origin (SOO) of premature ventricular complexes (PVC) from the surface ECG have not been subjected to newer data analytic techniques that identify signals that are not recognized by visual inspection. Aims: The objective of this study was to apply data analytics to PVC characteristics. Methods: PVCs from 12-lead ECGs of a consecutive series of 338 individuals were examined by unsupervised machine learning cluster analysis, and indexes were compared to a composite criterion for SOO. Results: Data analytics found that V1S plus V2S ≤ 9.25 of the PVC had a LVOT origin (sensitivity 95.4%; specificity 97.5%). V1R + V2R + V3R > 15.0 (a RBBB configuration) likely had a LVOT origin. PVCs with V1S plus V2S > 12.75 (LBBB configuration) likely had a RVOT origin. PVC with V1S plus V2S > 14.25 (LBBB configuration) and all inferior leads positive likely had a RVOT origin. Conclusion: Newer data analytic techniques provide a non-invasive approach to identifying PVC SOO, which should be useful for the clinician evaluating a 12-lead ECG.