Cargando…
Combining Machine Learning and Urine Oximetry: Towards an Intraoperative AKI Risk Prediction Algorithm
Acute kidney injury (AKI) affects up to 50% of cardiac surgery patients. The definition of AKI is based on changes in serum creatinine relative to a baseline measurement or a decrease in urine output. These monitoring methods lead to a delayed diagnosis. Monitoring the partial pressure of oxygen in...
Autores principales: | Lofgren, Lars, Silverton, Natalie, Kuck, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488092/ https://www.ncbi.nlm.nih.gov/pubmed/37685632 http://dx.doi.org/10.3390/jcm12175567 |
Ejemplares similares
-
Urine microscopy score combined with albumin creatinine ratio score improves prediction of future acute kidney injury (AKI) and worsening AKI
por: Dixon, JJ, et al.
Publicado: (2014) -
2416: A machine learning pipeline to predict acute kidney injury (AKI) in patients without AKI in their most recent hospitalization
por: Weisenthal, Samuel, et al.
Publicado: (2018) -
Storage Time and Urine Biomarker Levels in the ASSESS-AKI Study
por: Liu, Kathleen D., et al.
Publicado: (2016) -
AKI in a Patient with Fatigue, Weakness, and an Active Urine Sediment
por: Adonteng-Boateng, Percy, et al.
Publicado: (2023) -
Supervised Machine Learning Applied to Automate Flash and Prolonged Capillary Refill Detection by Pulse Oximetry
por: Hunter, Ryan Brandon, et al.
Publicado: (2020)