Cargando…

Nerve Structure-Function: Unusual Structural Details and Unmasking of Sulfhydryl Groups by Electrical Stimulation or Asphyxia in Axon Membranes and Gap Junctions

This review describes and discusses unusual axonal structural details and evidence for unmasking sulfhydryl groups (-SH) in axoplasmic membranes resulting from electrical stimulation or asphyxia. Crayfish axons contain fenestrated septa (FS) that, in phase contrast, micrographs appear as repeated st...

Descripción completa

Detalles Bibliográficos
Autor principal: Peracchia, Camillo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488147/
https://www.ncbi.nlm.nih.gov/pubmed/37686371
http://dx.doi.org/10.3390/ijms241713565
_version_ 1785103410020745216
author Peracchia, Camillo
author_facet Peracchia, Camillo
author_sort Peracchia, Camillo
collection PubMed
description This review describes and discusses unusual axonal structural details and evidence for unmasking sulfhydryl groups (-SH) in axoplasmic membranes resulting from electrical stimulation or asphyxia. Crayfish axons contain fenestrated septa (FS) that, in phase contrast, micrographs appear as repeated striations. In the electron microscope, each septum is made of two cross-sectioned membranes containing ~55 nm pores, each occupied by a microtubule. Thin filaments, which we believe are made of kinesin, bridge the microtubule to the edge of the pore. FS are believed to play a role in axoplasmic flow. The axons also display areas in which axon and sheath glial cell plasma membranes are sharply curved and project into the axoplasm. In freeze-fractures, the protoplasmic leaflet (P-face) of the projections appears as elongated indentations containing parallel chains of particles. The sheath glial cell plasma membrane also contains particles, but they are irregularly aggregated. The axons also display areas where axonal and glial plasma membranes fuse, creating intercellular pores. In axons fixed during electrical stimulation, the plasma membrane, the outer membrane of mitochondria, membranes of other cytoplasmic organelles, and gap junctions increase in electron opacity and thickness, resulting from unmasking of sulfhydryl groups (-SH). Similar changes occur in asphyxiated nerve cords.
format Online
Article
Text
id pubmed-10488147
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104881472023-09-09 Nerve Structure-Function: Unusual Structural Details and Unmasking of Sulfhydryl Groups by Electrical Stimulation or Asphyxia in Axon Membranes and Gap Junctions Peracchia, Camillo Int J Mol Sci Review This review describes and discusses unusual axonal structural details and evidence for unmasking sulfhydryl groups (-SH) in axoplasmic membranes resulting from electrical stimulation or asphyxia. Crayfish axons contain fenestrated septa (FS) that, in phase contrast, micrographs appear as repeated striations. In the electron microscope, each septum is made of two cross-sectioned membranes containing ~55 nm pores, each occupied by a microtubule. Thin filaments, which we believe are made of kinesin, bridge the microtubule to the edge of the pore. FS are believed to play a role in axoplasmic flow. The axons also display areas in which axon and sheath glial cell plasma membranes are sharply curved and project into the axoplasm. In freeze-fractures, the protoplasmic leaflet (P-face) of the projections appears as elongated indentations containing parallel chains of particles. The sheath glial cell plasma membrane also contains particles, but they are irregularly aggregated. The axons also display areas where axonal and glial plasma membranes fuse, creating intercellular pores. In axons fixed during electrical stimulation, the plasma membrane, the outer membrane of mitochondria, membranes of other cytoplasmic organelles, and gap junctions increase in electron opacity and thickness, resulting from unmasking of sulfhydryl groups (-SH). Similar changes occur in asphyxiated nerve cords. MDPI 2023-09-01 /pmc/articles/PMC10488147/ /pubmed/37686371 http://dx.doi.org/10.3390/ijms241713565 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Peracchia, Camillo
Nerve Structure-Function: Unusual Structural Details and Unmasking of Sulfhydryl Groups by Electrical Stimulation or Asphyxia in Axon Membranes and Gap Junctions
title Nerve Structure-Function: Unusual Structural Details and Unmasking of Sulfhydryl Groups by Electrical Stimulation or Asphyxia in Axon Membranes and Gap Junctions
title_full Nerve Structure-Function: Unusual Structural Details and Unmasking of Sulfhydryl Groups by Electrical Stimulation or Asphyxia in Axon Membranes and Gap Junctions
title_fullStr Nerve Structure-Function: Unusual Structural Details and Unmasking of Sulfhydryl Groups by Electrical Stimulation or Asphyxia in Axon Membranes and Gap Junctions
title_full_unstemmed Nerve Structure-Function: Unusual Structural Details and Unmasking of Sulfhydryl Groups by Electrical Stimulation or Asphyxia in Axon Membranes and Gap Junctions
title_short Nerve Structure-Function: Unusual Structural Details and Unmasking of Sulfhydryl Groups by Electrical Stimulation or Asphyxia in Axon Membranes and Gap Junctions
title_sort nerve structure-function: unusual structural details and unmasking of sulfhydryl groups by electrical stimulation or asphyxia in axon membranes and gap junctions
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488147/
https://www.ncbi.nlm.nih.gov/pubmed/37686371
http://dx.doi.org/10.3390/ijms241713565
work_keys_str_mv AT peracchiacamillo nervestructurefunctionunusualstructuraldetailsandunmaskingofsulfhydrylgroupsbyelectricalstimulationorasphyxiainaxonmembranesandgapjunctions