Cargando…
Machine Learning to Predict Apical Lesions: A Cross-Sectional and Model Development Study
(1) Background: We aimed to identify factors associated with the presence of apical lesions (AL) in panoramic radiographs and to evaluate the predictive value of the identified factors. (2) Methodology: Panoramic radiographs from 1071 patients (age: 11–93 a, mean: 50.6 a ± 19.7 a) with 27,532 teeth...
Autores principales: | Herbst, Sascha Rudolf, Pitchika, Vinay, Krois, Joachim, Krasowski, Aleksander, Schwendicke, Falk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488275/ https://www.ncbi.nlm.nih.gov/pubmed/37685531 http://dx.doi.org/10.3390/jcm12175464 |
Ejemplares similares
-
Predicting mortality in the very old: a machine learning analysis on claims data
por: Krasowski, Aleksander, et al.
Publicado: (2022) -
Resin Infiltration of Non-Cavitated Proximal Caries Lesions in Primary and Permanent Teeth: A Systematic Review and Scenario Analysis of Randomized Controlled Trials
por: Cebula, Marcus, et al.
Publicado: (2023) -
Impact of Noisy Labels on Dental Deep Learning—Calculus Detection on Bitewing Radiographs
por: Büttner, Martha, et al.
Publicado: (2023) -
Costs for Statutorily Insured Dental Services in Older Germans 2012–2017
por: Krasowski, Aleksander, et al.
Publicado: (2021) -
Machine Learning in Dentistry: A Scoping Review
por: Arsiwala-Scheppach, Lubaina T., et al.
Publicado: (2023)