Cargando…
scTIGER: A Deep-Learning Method for Inferring Gene Regulatory Networks from Case versus Control scRNA-seq Datasets
Inferring gene regulatory networks (GRNs) from single-cell RNA-seq (scRNA-seq) data is an important computational question to find regulatory mechanisms involved in fundamental cellular processes. Although many computational methods have been designed to predict GRNs from scRNA-seq data, they usuall...
Autores principales: | Dautle, Madison, Zhang, Shaoqiang, Chen, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488287/ https://www.ncbi.nlm.nih.gov/pubmed/37686146 http://dx.doi.org/10.3390/ijms241713339 |
Ejemplares similares
-
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data
por: Wang, HaiYun, et al.
Publicado: (2022) -
Cell lineage inference from SNP and scRNA-Seq data
por: Ding, Jun, et al.
Publicado: (2019) -
scDeepInsight: a supervised cell-type identification method for scRNA-seq data with deep learning
por: Jia, Shangru, et al.
Publicado: (2023) -
scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
por: Zhang, Ziqi, et al.
Publicado: (2022) -
scRNASequest: an ecosystem of scRNA-seq analysis, visualization, and publishing
por: Li, Kejie, et al.
Publicado: (2023)