Cargando…
Developing an Electrochemically Reversible Switch for Modulating the Optical Signal of Gold Nanoparticles
Gold nanoparticles (AuNPs) possess remarkable optical properties and electrical conductivity, making them highly relevant in various fields such as medical diagnoses, biological imaging, and electronic sensors. However, the existing methods for modulating the optical properties of AuNPs are often un...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488341/ https://www.ncbi.nlm.nih.gov/pubmed/37687062 http://dx.doi.org/10.3390/molecules28176233 |
Sumario: | Gold nanoparticles (AuNPs) possess remarkable optical properties and electrical conductivity, making them highly relevant in various fields such as medical diagnoses, biological imaging, and electronic sensors. However, the existing methods for modulating the optical properties of AuNPs are often under limitations such as a high cost, the complexity of detection, a narrow range of application settings, and irreversibility. In this study, we propose a novel approach to address these challenges by constructing a reversible electrochemical switch. The switch (ITO-OMAD) involves covalently linking nitroxide radicals and AuNPs (AuNPs-NO•), followed by tethering this nanocomposite to a siloxane-derived indium tin oxide (ITO) electrode. By simply electrochemically oxidizing/reducing the nitroxide units, one is able to reversibly modulate the optical properties of AuNPs at will. The surface morphology and structure of the as-prepared ITO-OMAD electrode were characterized through scanning electron microscopy (SEM) and cyclic voltammetry (CV). SEM imaging confirmed the successful anchoring of AuNPs on the ITO electrode. Electrochemical tests performed in the three-electrode system demonstrated that the local surface plasmon resonance (LSPR) of AuNPs can be reversibly regulated by alternatively imposing ± 0.5V (vs. Ag/AgCl) to the modified electrode. The development of this electrochemical switch presents a novel approach to effectively control the optical properties of AuNPs. The further exploration and utilization of this reversible electrochemical switch could significantly enhance the versatility and practicality of AuNPs in numerous applications. |
---|