Cargando…
The Effects of the Pre-Anodized Film Thickness on Growth Mechanism of Plasma Electrolytic Oxidation Coatings on the 1060 Al Substrate
To increase the density of the micro-arc oxide coating, AA 1060 samples were pretreated with an anodic oxide film in an oxalic acid solution. Plasma electrolytic oxidation (PEO) was performed to investigate the effect of the thickness of the pre-anodic oxide film on the soft-sparking mechanism. The...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488349/ https://www.ncbi.nlm.nih.gov/pubmed/37687615 http://dx.doi.org/10.3390/ma16175922 |
Sumario: | To increase the density of the micro-arc oxide coating, AA 1060 samples were pretreated with an anodic oxide film in an oxalic acid solution. Plasma electrolytic oxidation (PEO) was performed to investigate the effect of the thickness of the pre-anodic oxide film on the soft-sparking mechanism. The experimental results revealed that the PEO coating phases with different thicknesses of the pre-anodized films contained both Al and gamma–alumina (γ-Al(2)O(3)). The pre-anodized film changes the final morphology of the coating, accelerating the soft sparking transition and retaining the soft sparking. At a pre-anodized film thickness of ≤7.7 μm, the anodized films thickened before being broken through. When the pre-anodized film thickness was ≥13.1 μm, partial dissolution of the anodized films occurred before they were struck through. Two growth mechanisms for PEO coatings with different pre-anodized film thicknesses were proposed. |
---|