Cargando…
A Review of Metamaterials in Wireless Power Transfer
Wireless power transfer (WPT) is a technology that enables energy transmission without physical contact, utilizing magnetic and electric fields as soft media. While WPT has numerous applications, the increasing power transfer distance often results in a decrease in transmission efficiency, as well a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488467/ https://www.ncbi.nlm.nih.gov/pubmed/37687701 http://dx.doi.org/10.3390/ma16176008 |
Sumario: | Wireless power transfer (WPT) is a technology that enables energy transmission without physical contact, utilizing magnetic and electric fields as soft media. While WPT has numerous applications, the increasing power transfer distance often results in a decrease in transmission efficiency, as well as the urgent need for addressing safety concerns. Metamaterials offer a promising way for improving efficiency and reducing the flux density in WPT systems. This paper provides an overview of the current status and technical challenges of metamaterial-based WPT systems. The basic principles of magnetic coupling resonant wireless power transfer (MCR-WPT) are presented, followed by a detailed description of the metamaterial design theory and its application in WPT. The paper then reviews the metamaterial-based wireless energy transmission system from three perspectives: transmission efficiency, misalignment tolerance, and electromagnetic shielding. Finally, the paper summarizes the development trends and technical challenges of metamaterial-based WPT systems. |
---|