Cargando…
Evolution of the Chronic Venous Leg Ulcer Microenvironment and Its Impact on Medical Devices and Wound Care Therapies
Studies have reported that the constituents of the wound microenvironment are likely to have critical roles in the degradation and fate of the polymeric matrix and the compounds dissolved in the wound dressing matrix. Thus, chronic wound assessment and the design of effective medical devices and dru...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488485/ https://www.ncbi.nlm.nih.gov/pubmed/37685674 http://dx.doi.org/10.3390/jcm12175605 |
Sumario: | Studies have reported that the constituents of the wound microenvironment are likely to have critical roles in the degradation and fate of the polymeric matrix and the compounds dissolved in the wound dressing matrix. Thus, chronic wound assessment and the design of effective medical devices and drug products for wound care partly rely on an in-depth understanding of the wound microenvironment. The main aim of this review is to identify and discuss the different stages of chronic wound progression, focusing on the changes in the biochemical composition of the wound microenvironment, with particular attention given to venous leg ulcers (VLUs), as they are one of the most prevalent chronic wound aetiologies. The pathophysiology of venous ulcers is detailed, followed by a thorough review of what is known about the VLU microenvironment and its changes as a function of the evolution of the VLU. Simulating conditions for VLU are then discussed with the view of highlighting potentially relevant simulating media as a function of VLU evolution for a better assessment of biological safety, in particular medical devices intended to be in contact with these wounds. |
---|