Cargando…

Bioconsolidation of Damaged Construction Calcarenites and Evaluation of the Improvement in Their Petrophysical and Mechanical Properties

Bioconsolidation treatment using bacterial carbonatogenesis has been proposed as an environmentally friendly strategy for the efficient preservation of damaged stones, particularly suitable for carbonate stones. The study presented here deals with the evaluation of the performance of this treatment,...

Descripción completa

Detalles Bibliográficos
Autores principales: Spairani-Berrio, Yolanda, Huesca-Tortosa, J. Antonio, Rodriguez-Navarro, Carlos, Gonzalez-Muñoz, María Teresa, Jroundi, Fadwa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488494/
https://www.ncbi.nlm.nih.gov/pubmed/37687736
http://dx.doi.org/10.3390/ma16176043
Descripción
Sumario:Bioconsolidation treatment using bacterial carbonatogenesis has been proposed as an environmentally friendly strategy for the efficient preservation of damaged stones, particularly suitable for carbonate stones. The study presented here deals with the evaluation of the performance of this treatment, applied to damaged carbonate stones in two historical buildings in Spain. The methodology applied in this research serves as a reference for future similar studies. Results showed significant improvement in the petrophysical and mechanical properties of the damaged stone following the treatment through the production of calcite and vaterite by the abundant carbonatogenic bacteria inhabiting the stone. These bacteria were able to effectively consolidate weathered areas if an adequate nutritional solution was employed, thereby augmenting the stone’s resistance, as evidenced by the Drilling Resistance Measurement System (DRMS). FESEM images showed calcified bacteria and calcified exopolymeric substances (EPS) consolidating stone minerals without blocking their pores. In addition to consolidation, this biotreatment improves the stone’s behavior against water absorption and increases the contact angle of water droplets without significant modifications in the pore size or diminishing vapor permeability. No color changes are observed. Overall, these results show that the application of the nutritional solution (M-3P) for in situ consolidation of different types of porous carbonate building stones is a highly effective conservation method, with no modification of the chemical composition of the treated materials.