Cargando…

A Novel 1000 MPa Grade Ultrafine-Grained Dual-Phase Press Hardening Steel with Superior Oxidation Resistance and High Ductility

1000 MPa grade low-carbon martensite press hardening steels (PHS) are widely used in energy-absorbing domains of automotive parts, such as the bottom of a B-pillar. To prevent oxide scale formation during hot forming, this PHS is often required to be protected by an additional Al–Si coating. In addi...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Dapeng, Liang, Jiawei, Zhou, Junlong, Xu, Xin, Hu, Zhiping, Gu, Xingli, Wang, Guodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488505/
https://www.ncbi.nlm.nih.gov/pubmed/37687685
http://dx.doi.org/10.3390/ma16175994
Descripción
Sumario:1000 MPa grade low-carbon martensite press hardening steels (PHS) are widely used in energy-absorbing domains of automotive parts, such as the bottom of a B-pillar. To prevent oxide scale formation during hot forming, this PHS is often required to be protected by an additional Al–Si coating. In addition, although the low carbon martensitic microstructure grants it excellent bending toughness, the ductility tends to be limited. In this study, a novel 1000 MPa grade ultrafine-grained (UFG) martensite–ferrite (F–M) dual-phase (DP) PHS with superior oxidation resistance was designed using tailored additions of Cr, Mn, and Si, and refining the initial microstructure. Only 0.55 ± 0.18 μm thick oxide film is formed in the designed steel during austenitizing heating and stamping, which is significantly lower than the 24.6 ± 3.1 μm thick oxide film formed in conventional 1000 MPa grade low-carbon martensite PHS under the identical condition. The superior oxidation resistance of designed steel can be attributed to the rapid formation of the protective Si-rich, Cr-rich, and Mn-rich oxide layers during annealing. Moreover, due to the presence of ferrite and ultrafine microstructure, the designed steel also shows a significant improvement in ductility from 8.5% to 16.8% without sacrificing strength and bending toughness compared with conventional 1000 MPa grade low-carbon martensite PHS.