Cargando…

Effect of the Sintering Mechanism on the Crystallization Kinetics of Geopolymer-Based Ceramics

This research aims to study the effects of the sintering mechanism on the crystallization kinetics when the geopolymer is sintered at different temperatures: 200 °C, 400 °C, 600 °C, 800 °C, 1000 °C, and 1200 °C for a 3 h soaking time with a heating rate of 5 °C/min. The geopolymer is made up of kaol...

Descripción completa

Detalles Bibliográficos
Autores principales: Mustapa, Nur Bahijah, Ahmad, Romisuhani, Al Bakri Abdullah, Mohd Mustafa, Ibrahim, Wan Mastura Wan, Sandu, Andrei Victor, Nemes, Ovidiu, Vizureanu, Petrica, Kartikowati, Christina W., Risdanareni, Puput
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488519/
https://www.ncbi.nlm.nih.gov/pubmed/37687546
http://dx.doi.org/10.3390/ma16175853
Descripción
Sumario:This research aims to study the effects of the sintering mechanism on the crystallization kinetics when the geopolymer is sintered at different temperatures: 200 °C, 400 °C, 600 °C, 800 °C, 1000 °C, and 1200 °C for a 3 h soaking time with a heating rate of 5 °C/min. The geopolymer is made up of kaolin and sodium silicate as the precursor and an alkali activator, respectively. Characterization of the nepheline produced was carried out using XRF to observe the chemical composition of the geopolymer ceramics. The microstructures and the phase characterization were determined by using SEM and XRD, respectively. The SEM micrograph showed the microstructural development of the geopolymer ceramics as well as identifying reacted/unreacted regions, porosity, and cracks. The maximum flexural strength of 78.92 MPa was achieved by geopolymer sintered at 1200 °C while the minimum was at 200 °C; 7.18 MPa. The result indicates that the flexural strength increased alongside the increment in the sintering temperature of the geopolymer ceramics. This result is supported by the data from the SEM micrograph, where at the temperature of 1000 °C, the matrix structure of geopolymer-based ceramics starts to become dense with the appearance of pores.