Cargando…
Design and Synthesis Strategy of MXenes-Based Anode Materials for Sodium-Ion Batteries and Progress of First-Principles Research
MXenes-based materials are considered to be one of the most promising electrode materials in the field of sodium-ion batteries due to their excellent flexibility, high conductivity and tuneable surface functional groups. However, MXenes often have severe self-agglomeration, low capacity and unsatisf...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488534/ https://www.ncbi.nlm.nih.gov/pubmed/37687121 http://dx.doi.org/10.3390/molecules28176292 |
Sumario: | MXenes-based materials are considered to be one of the most promising electrode materials in the field of sodium-ion batteries due to their excellent flexibility, high conductivity and tuneable surface functional groups. However, MXenes often have severe self-agglomeration, low capacity and unsatisfactory durability, which affects their practical value. The design and synthesis of advanced heterostructures with advanced chemical structures and excellent electrochemical performance for sodium-ion batteries have been widely studied and developed in the field of energy storage devices. In this review, the design and synthesis strategies of MXenes-based sodium-ion battery anode materials and the influence of various synthesis strategies on the structure and properties of MXenes-based materials are comprehensively summarized. Then, the first-principles research progress of MXenes-based sodium-ion battery anode materials is summarized, and the relationship between the storage mechanism and structure of sodium-ion batteries and the electrochemical performance is revealed. Finally, the key challenges and future research directions of the current design and synthesis strategies and first principles of these MXenes-based sodium-ion battery anode materials are introduced. |
---|