Cargando…

APOE ε4 Gene Carriers Demonstrate Reduced Retinal Capillary Densities in Asymptomatic Older Adults

Early identification of Apolipoprotein E (APOE)-related microvascular pathology will help to study the microangiopathic contribution to Alzheimer’s disease and provide a therapeutic target for early intervention. To evaluate the differences in retinal microvasculature parameters between APOE ε4 carr...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ziyi, Kwapong, William Robert, Cao, Le, Feng, Zijuan, Wu, Bo, Liu, Junfeng, Zhang, Shuting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488535/
https://www.ncbi.nlm.nih.gov/pubmed/37685715
http://dx.doi.org/10.3390/jcm12175649
Descripción
Sumario:Early identification of Apolipoprotein E (APOE)-related microvascular pathology will help to study the microangiopathic contribution to Alzheimer’s disease and provide a therapeutic target for early intervention. To evaluate the differences in retinal microvasculature parameters between APOE ε4 carriers and non-carriers, asymptomatic older adults aged ≥ 55 years underwent APOE ε4 genotype analysis, neuropsychological examination, and optical coherence tomography angiography (OCTA) imaging. One hundred sixty-three older adults were included in the data analysis. Participants were also defined as cognitively impaired (CI) and non-cognitively impaired (NCI) according to their MoCA scores and educational years. APOE ε4 carriers demonstrated reduced SVC (p = 0.023) compared to APOE ε4 non-carriers. Compared to NCI, CI participants showed reduced SVC density (p = 0.006). In the NCI group, no significant differences (p > 0.05) were observed in the microvascular densities between APOE ε4 carriers and non-carriers. In the CI group, APOE ε4 carriers displayed reduced microvascular densities compared to non-carriers (SVC, p = 0.006; DVC, p = 0.048). We showed that CI and APOE ε4 affect retinal microvasculature in older adults. Quantitative measures of the retinal microvasculature could serve as surrogates for brain microcirculation, providing an opportunity to study microvascular contributions to AD.