Cargando…
Thermal Behavior of Carbon-Phenolic/Silica Phenolic Dual-Layer Ablator Specimens through Arc-Jet Tests
We studied the behavioral characteristics of a newly developed dual-layer ablator, which uses carbon-phenolic as a recession layer and silica-phenolic as an insulating layer. The ablator specimens were tested in a 0.4 MW supersonic arc-jet plasma wind tunnel, employing two different shapes (flat-fac...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488554/ https://www.ncbi.nlm.nih.gov/pubmed/37687622 http://dx.doi.org/10.3390/ma16175929 |
_version_ | 1785103503283191808 |
---|---|
author | Chinnaraj, Rajesh Kumar Kim, Young Chan Choi, Seong Man |
author_facet | Chinnaraj, Rajesh Kumar Kim, Young Chan Choi, Seong Man |
author_sort | Chinnaraj, Rajesh Kumar |
collection | PubMed |
description | We studied the behavioral characteristics of a newly developed dual-layer ablator, which uses carbon-phenolic as a recession layer and silica-phenolic as an insulating layer. The ablator specimens were tested in a 0.4 MW supersonic arc-jet plasma wind tunnel, employing two different shapes (flat-faced and hemispherical-faced) and varying thicknesses of the carbon-phenolic recession layer. The specimens underwent two test conditions, namely, stationary tests (7.5 MW/m(2), ~40 s) and transient tests simulating an interplanetary spacecraft re-entry heat flux trajectory (6.25↔9.4 MW/m(2), ~108 s). During the stationary tests, stagnation point temperatures of the specimens were measured. Additionally, internal temperatures of the specimens were measured at three locations for both stationary and transient tests: inside the carbon-phenolic recession layer, inside the silica-phenolic insulating layer, and at the recession layer–insulating layer intersection. The hemispherical-faced specimen surface temperatures were about 3000 K, which is about 350 K higher than those of flat-faced specimens, resulting in higher internal temperatures. The recession layer internal temperatures rose more exponentially when moved closer to the specimen stagnation point. Layer interaction and insulating layer internal temperatures were found to be dependent on both the recession layer thickness and the exposed surface shape. The change in exposed surface shape increased mass loss and recession, with hemispherical-faced specimens showing ~1.4-fold higher values than the flat-faced specimens. |
format | Online Article Text |
id | pubmed-10488554 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104885542023-09-09 Thermal Behavior of Carbon-Phenolic/Silica Phenolic Dual-Layer Ablator Specimens through Arc-Jet Tests Chinnaraj, Rajesh Kumar Kim, Young Chan Choi, Seong Man Materials (Basel) Article We studied the behavioral characteristics of a newly developed dual-layer ablator, which uses carbon-phenolic as a recession layer and silica-phenolic as an insulating layer. The ablator specimens were tested in a 0.4 MW supersonic arc-jet plasma wind tunnel, employing two different shapes (flat-faced and hemispherical-faced) and varying thicknesses of the carbon-phenolic recession layer. The specimens underwent two test conditions, namely, stationary tests (7.5 MW/m(2), ~40 s) and transient tests simulating an interplanetary spacecraft re-entry heat flux trajectory (6.25↔9.4 MW/m(2), ~108 s). During the stationary tests, stagnation point temperatures of the specimens were measured. Additionally, internal temperatures of the specimens were measured at three locations for both stationary and transient tests: inside the carbon-phenolic recession layer, inside the silica-phenolic insulating layer, and at the recession layer–insulating layer intersection. The hemispherical-faced specimen surface temperatures were about 3000 K, which is about 350 K higher than those of flat-faced specimens, resulting in higher internal temperatures. The recession layer internal temperatures rose more exponentially when moved closer to the specimen stagnation point. Layer interaction and insulating layer internal temperatures were found to be dependent on both the recession layer thickness and the exposed surface shape. The change in exposed surface shape increased mass loss and recession, with hemispherical-faced specimens showing ~1.4-fold higher values than the flat-faced specimens. MDPI 2023-08-30 /pmc/articles/PMC10488554/ /pubmed/37687622 http://dx.doi.org/10.3390/ma16175929 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chinnaraj, Rajesh Kumar Kim, Young Chan Choi, Seong Man Thermal Behavior of Carbon-Phenolic/Silica Phenolic Dual-Layer Ablator Specimens through Arc-Jet Tests |
title | Thermal Behavior of Carbon-Phenolic/Silica Phenolic Dual-Layer Ablator Specimens through Arc-Jet Tests |
title_full | Thermal Behavior of Carbon-Phenolic/Silica Phenolic Dual-Layer Ablator Specimens through Arc-Jet Tests |
title_fullStr | Thermal Behavior of Carbon-Phenolic/Silica Phenolic Dual-Layer Ablator Specimens through Arc-Jet Tests |
title_full_unstemmed | Thermal Behavior of Carbon-Phenolic/Silica Phenolic Dual-Layer Ablator Specimens through Arc-Jet Tests |
title_short | Thermal Behavior of Carbon-Phenolic/Silica Phenolic Dual-Layer Ablator Specimens through Arc-Jet Tests |
title_sort | thermal behavior of carbon-phenolic/silica phenolic dual-layer ablator specimens through arc-jet tests |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488554/ https://www.ncbi.nlm.nih.gov/pubmed/37687622 http://dx.doi.org/10.3390/ma16175929 |
work_keys_str_mv | AT chinnarajrajeshkumar thermalbehaviorofcarbonphenolicsilicaphenolicduallayerablatorspecimensthrougharcjettests AT kimyoungchan thermalbehaviorofcarbonphenolicsilicaphenolicduallayerablatorspecimensthrougharcjettests AT choiseongman thermalbehaviorofcarbonphenolicsilicaphenolicduallayerablatorspecimensthrougharcjettests |