Cargando…

Corrosion of Reinforced A630-420H Steel in Direct Contact with NaCl Solution

The deterioration of reinforced concrete structures in marine environments presents multiple problems due to the premature degradation of reinforced steel. This work aimed to study the corrosion of reinforced A630-420H steel when exposed to a 0.5 M NaCl solution. Although this carbon steel is the mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Madrid, Felipe M. Galleguillos, Soliz, Alvaro, Cáceres, Luis, Salazar-Avalos, Sebastian, Guzmán, Danny, Gálvez, Edelmira
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488756/
https://www.ncbi.nlm.nih.gov/pubmed/37687710
http://dx.doi.org/10.3390/ma16176017
_version_ 1785103551682314240
author Madrid, Felipe M. Galleguillos
Soliz, Alvaro
Cáceres, Luis
Salazar-Avalos, Sebastian
Guzmán, Danny
Gálvez, Edelmira
author_facet Madrid, Felipe M. Galleguillos
Soliz, Alvaro
Cáceres, Luis
Salazar-Avalos, Sebastian
Guzmán, Danny
Gálvez, Edelmira
author_sort Madrid, Felipe M. Galleguillos
collection PubMed
description The deterioration of reinforced concrete structures in marine environments presents multiple problems due to the premature degradation of reinforced steel. This work aimed to study the corrosion of reinforced A630-420H steel when exposed to a 0.5 M NaCl solution. Although this carbon steel is the most widely used material for reinforced concrete structures in Chile, there is limited research on its resistance to corrosion when in contact with saline solutions. The electrochemical reactions and their roles in the corrosion rate were studied using linear sweep voltammetry, weight loss, scanning electron microscopy, and X-ray diffraction techniques. This analysis is unique as it used the superposition model based on mixed potential theory to determine the electrochemical and corrosion parameters. The outcomes of this study show that A630-420H steel has a higher corrosion rate than those of the other commercial carbon steels studied. This fact can be attributed to the competition between the cathodic oxygen reduction reaction and hydrogen evolution reaction, which also depends on the environmental conditions, exposure time, stabilization of the corrosion products layer, and presence of chloride ions. Additionally, the results under mechanical stress conditions show a brittle fracture of the corrosion product oriented longitudinally in the direction of the bend section, where the presence of pores and cracks were also observed. The corrosion products after corrosion were mainly composed of magnetite and lepidocrocite oxide phases, which is in concordance with the electrochemical results.
format Online
Article
Text
id pubmed-10488756
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104887562023-09-09 Corrosion of Reinforced A630-420H Steel in Direct Contact with NaCl Solution Madrid, Felipe M. Galleguillos Soliz, Alvaro Cáceres, Luis Salazar-Avalos, Sebastian Guzmán, Danny Gálvez, Edelmira Materials (Basel) Article The deterioration of reinforced concrete structures in marine environments presents multiple problems due to the premature degradation of reinforced steel. This work aimed to study the corrosion of reinforced A630-420H steel when exposed to a 0.5 M NaCl solution. Although this carbon steel is the most widely used material for reinforced concrete structures in Chile, there is limited research on its resistance to corrosion when in contact with saline solutions. The electrochemical reactions and their roles in the corrosion rate were studied using linear sweep voltammetry, weight loss, scanning electron microscopy, and X-ray diffraction techniques. This analysis is unique as it used the superposition model based on mixed potential theory to determine the electrochemical and corrosion parameters. The outcomes of this study show that A630-420H steel has a higher corrosion rate than those of the other commercial carbon steels studied. This fact can be attributed to the competition between the cathodic oxygen reduction reaction and hydrogen evolution reaction, which also depends on the environmental conditions, exposure time, stabilization of the corrosion products layer, and presence of chloride ions. Additionally, the results under mechanical stress conditions show a brittle fracture of the corrosion product oriented longitudinally in the direction of the bend section, where the presence of pores and cracks were also observed. The corrosion products after corrosion were mainly composed of magnetite and lepidocrocite oxide phases, which is in concordance with the electrochemical results. MDPI 2023-09-01 /pmc/articles/PMC10488756/ /pubmed/37687710 http://dx.doi.org/10.3390/ma16176017 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Madrid, Felipe M. Galleguillos
Soliz, Alvaro
Cáceres, Luis
Salazar-Avalos, Sebastian
Guzmán, Danny
Gálvez, Edelmira
Corrosion of Reinforced A630-420H Steel in Direct Contact with NaCl Solution
title Corrosion of Reinforced A630-420H Steel in Direct Contact with NaCl Solution
title_full Corrosion of Reinforced A630-420H Steel in Direct Contact with NaCl Solution
title_fullStr Corrosion of Reinforced A630-420H Steel in Direct Contact with NaCl Solution
title_full_unstemmed Corrosion of Reinforced A630-420H Steel in Direct Contact with NaCl Solution
title_short Corrosion of Reinforced A630-420H Steel in Direct Contact with NaCl Solution
title_sort corrosion of reinforced a630-420h steel in direct contact with nacl solution
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488756/
https://www.ncbi.nlm.nih.gov/pubmed/37687710
http://dx.doi.org/10.3390/ma16176017
work_keys_str_mv AT madridfelipemgalleguillos corrosionofreinforceda630420hsteelindirectcontactwithnaclsolution
AT solizalvaro corrosionofreinforceda630420hsteelindirectcontactwithnaclsolution
AT caceresluis corrosionofreinforceda630420hsteelindirectcontactwithnaclsolution
AT salazaravalossebastian corrosionofreinforceda630420hsteelindirectcontactwithnaclsolution
AT guzmandanny corrosionofreinforceda630420hsteelindirectcontactwithnaclsolution
AT galvezedelmira corrosionofreinforceda630420hsteelindirectcontactwithnaclsolution