Cargando…
Development and Fabrication of Biocompatible Ti-Based Bulk Metallic Glass Matrix Composites for Additive Manufacturing
Ti-based metallic glasses have a high potential for implant applications. The feasibility of a new biocompatible Ti-based bulk metallic glass composite for selective laser melting (SLM) had been examined. Therefore, it is necessary to design a high-glass-forming-ability Ti-based metallic glass (∆T(x...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488760/ https://www.ncbi.nlm.nih.gov/pubmed/37687626 http://dx.doi.org/10.3390/ma16175935 |
Sumario: | Ti-based metallic glasses have a high potential for implant applications. The feasibility of a new biocompatible Ti-based bulk metallic glass composite for selective laser melting (SLM) had been examined. Therefore, it is necessary to design a high-glass-forming-ability Ti-based metallic glass (∆T(x) = 81 K, γ = 0.427, γ(m) = 0.763), to fabricate a partial glass-formable spherical powder (the volume fraction of the amorphous phase in the atomized Ti-based powders being 73% [size < 25 μm], 61% [25–37 μm], and 50% [37–44 μm]), and establish an SLM parameter (a scan rate of 600 mm/s, a power of 120 W, and an overlap of 10%). The Ti(42)Zr(35)Si(5)Co(12.5)Sn(2.5)Ta(3) bulk metallic glass composite was successfully fabricated through SLM. This study demonstrates that the TiZrSiCoSnTa system constitutes a promising basis for the additive manufacturing process in terms of preparing biocompatible metallic glass composites into complicated graded foam shapes. |
---|