Cargando…
Process Optimization, Morphology, Structure, and Adhesive Strength of Electrodeposited Ni–Fe–Graphene Composite Coating on the 7075 Aluminum Alloy
The process parameters of electrodeposited Ni–Fe–graphene composite coating on the 7075 aluminum alloy were optimized by the orthogonal experiment. The optimized process parameters were determined as follows: graphene concentration of 1 g L(−1), current density of 9 A dm(−2), agitation speed of 250...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488779/ https://www.ncbi.nlm.nih.gov/pubmed/37687755 http://dx.doi.org/10.3390/ma16176062 |
_version_ | 1785103557218795520 |
---|---|
author | Li, Na Zhang, Lan Ma, Huizhong Li, Qiao Sun, Xingke |
author_facet | Li, Na Zhang, Lan Ma, Huizhong Li, Qiao Sun, Xingke |
author_sort | Li, Na |
collection | PubMed |
description | The process parameters of electrodeposited Ni–Fe–graphene composite coating on the 7075 aluminum alloy were optimized by the orthogonal experiment. The optimized process parameters were determined as follows: graphene concentration of 1 g L(−1), current density of 9 A dm(−2), agitation speed of 250 r min(−1), and temperature of 60 °C, on the basis of hardness and friction coefficient. The Ni–Fe–graphene composite coating shows an increment of 393.0% in hardness and a decrement of 55.9% in friction coefficient in comparison with 7075 aluminum alloy substrate. The Ni–Fe–graphene composite coating binds tightly to 7075 aluminum alloy with adhesion strength of higher than 6.895 MPa. These make contributions to provide effective protection for aluminum alloys. Surface morphology and corrosion morphology, as well as morphology of the side bound to the substrate, were characterized. The scattered asperities on the surface were proven to be graphene nanoplatelets being wrapped by Ni–Fe, which comprehensively reveals the formation of asperities. |
format | Online Article Text |
id | pubmed-10488779 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104887792023-09-09 Process Optimization, Morphology, Structure, and Adhesive Strength of Electrodeposited Ni–Fe–Graphene Composite Coating on the 7075 Aluminum Alloy Li, Na Zhang, Lan Ma, Huizhong Li, Qiao Sun, Xingke Materials (Basel) Article The process parameters of electrodeposited Ni–Fe–graphene composite coating on the 7075 aluminum alloy were optimized by the orthogonal experiment. The optimized process parameters were determined as follows: graphene concentration of 1 g L(−1), current density of 9 A dm(−2), agitation speed of 250 r min(−1), and temperature of 60 °C, on the basis of hardness and friction coefficient. The Ni–Fe–graphene composite coating shows an increment of 393.0% in hardness and a decrement of 55.9% in friction coefficient in comparison with 7075 aluminum alloy substrate. The Ni–Fe–graphene composite coating binds tightly to 7075 aluminum alloy with adhesion strength of higher than 6.895 MPa. These make contributions to provide effective protection for aluminum alloys. Surface morphology and corrosion morphology, as well as morphology of the side bound to the substrate, were characterized. The scattered asperities on the surface were proven to be graphene nanoplatelets being wrapped by Ni–Fe, which comprehensively reveals the formation of asperities. MDPI 2023-09-04 /pmc/articles/PMC10488779/ /pubmed/37687755 http://dx.doi.org/10.3390/ma16176062 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Na Zhang, Lan Ma, Huizhong Li, Qiao Sun, Xingke Process Optimization, Morphology, Structure, and Adhesive Strength of Electrodeposited Ni–Fe–Graphene Composite Coating on the 7075 Aluminum Alloy |
title | Process Optimization, Morphology, Structure, and Adhesive Strength of Electrodeposited Ni–Fe–Graphene Composite Coating on the 7075 Aluminum Alloy |
title_full | Process Optimization, Morphology, Structure, and Adhesive Strength of Electrodeposited Ni–Fe–Graphene Composite Coating on the 7075 Aluminum Alloy |
title_fullStr | Process Optimization, Morphology, Structure, and Adhesive Strength of Electrodeposited Ni–Fe–Graphene Composite Coating on the 7075 Aluminum Alloy |
title_full_unstemmed | Process Optimization, Morphology, Structure, and Adhesive Strength of Electrodeposited Ni–Fe–Graphene Composite Coating on the 7075 Aluminum Alloy |
title_short | Process Optimization, Morphology, Structure, and Adhesive Strength of Electrodeposited Ni–Fe–Graphene Composite Coating on the 7075 Aluminum Alloy |
title_sort | process optimization, morphology, structure, and adhesive strength of electrodeposited ni–fe–graphene composite coating on the 7075 aluminum alloy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488779/ https://www.ncbi.nlm.nih.gov/pubmed/37687755 http://dx.doi.org/10.3390/ma16176062 |
work_keys_str_mv | AT lina processoptimizationmorphologystructureandadhesivestrengthofelectrodepositednifegraphenecompositecoatingonthe7075aluminumalloy AT zhanglan processoptimizationmorphologystructureandadhesivestrengthofelectrodepositednifegraphenecompositecoatingonthe7075aluminumalloy AT mahuizhong processoptimizationmorphologystructureandadhesivestrengthofelectrodepositednifegraphenecompositecoatingonthe7075aluminumalloy AT liqiao processoptimizationmorphologystructureandadhesivestrengthofelectrodepositednifegraphenecompositecoatingonthe7075aluminumalloy AT sunxingke processoptimizationmorphologystructureandadhesivestrengthofelectrodepositednifegraphenecompositecoatingonthe7075aluminumalloy |