Cargando…
A Molecular Electron Density Theory Study of the Domino Reaction of N-Phenyl Iminoboranes with Benzaldehyde Yielding Fused Bicyclic Compounds
The reaction of N-phenyl iminoborane with benzaldehyde yielding a fused aromatic compound, recently reported by Liu et al., has been studied within the Molecular Electron Density Theory (MEDT). Formation of the fused aromatic compound is a domino process that comprises three consecutive reactions: (...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488853/ https://www.ncbi.nlm.nih.gov/pubmed/37687040 http://dx.doi.org/10.3390/molecules28176211 |
_version_ | 1785103575164125184 |
---|---|
author | Domingo, Luis R. Aurell, María José Ríos-Gutiérrez, Mar |
author_facet | Domingo, Luis R. Aurell, María José Ríos-Gutiérrez, Mar |
author_sort | Domingo, Luis R. |
collection | PubMed |
description | The reaction of N-phenyl iminoborane with benzaldehyde yielding a fused aromatic compound, recently reported by Liu et al., has been studied within the Molecular Electron Density Theory (MEDT). Formation of the fused aromatic compound is a domino process that comprises three consecutive reactions: (i) formation of a weak molecular complex between the reagents; (ii) an intramolecular electrophilic attack of the activated carbonyl carbon of benzaldehyde on the ortho position of the N-phenyl substituent of iminoborane; and (iii) a formal 1,3-hydrogen shift yielding the final fused aromatic compound. The two last steps correspond to a Friedel–Crafts acylation reaction, the product of the second reaction being the tetrahedral intermediate of an electrophilic aromatic substitution reaction. However, the presence of the imino group adjacent to the aromatic ring strongly stabilizes the corresponding intermediate, being the reaction product when the ortho positions are occupied by t-butyl substituents. This domino reaction shows a great similitude with the Brønsted acid catalyzed Povarov reaction. Although N-phenyl iminoborane can experience a formal [2+2] cycloaddition reaction with benzaldehyde, its higher activation Gibbs free energy compared to the intramolecular electrophilic attack of the activated carbonyl carbon of benzaldehyde on the ortho position of the N-phenyl substituent, 6.6 kcal·mol(−1), prevents the formation of the formal [2+2] cycloadduct. The present MEDT study provides a different vision of the molecular mechanism of these reactions based on the electron density. |
format | Online Article Text |
id | pubmed-10488853 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104888532023-09-09 A Molecular Electron Density Theory Study of the Domino Reaction of N-Phenyl Iminoboranes with Benzaldehyde Yielding Fused Bicyclic Compounds Domingo, Luis R. Aurell, María José Ríos-Gutiérrez, Mar Molecules Article The reaction of N-phenyl iminoborane with benzaldehyde yielding a fused aromatic compound, recently reported by Liu et al., has been studied within the Molecular Electron Density Theory (MEDT). Formation of the fused aromatic compound is a domino process that comprises three consecutive reactions: (i) formation of a weak molecular complex between the reagents; (ii) an intramolecular electrophilic attack of the activated carbonyl carbon of benzaldehyde on the ortho position of the N-phenyl substituent of iminoborane; and (iii) a formal 1,3-hydrogen shift yielding the final fused aromatic compound. The two last steps correspond to a Friedel–Crafts acylation reaction, the product of the second reaction being the tetrahedral intermediate of an electrophilic aromatic substitution reaction. However, the presence of the imino group adjacent to the aromatic ring strongly stabilizes the corresponding intermediate, being the reaction product when the ortho positions are occupied by t-butyl substituents. This domino reaction shows a great similitude with the Brønsted acid catalyzed Povarov reaction. Although N-phenyl iminoborane can experience a formal [2+2] cycloaddition reaction with benzaldehyde, its higher activation Gibbs free energy compared to the intramolecular electrophilic attack of the activated carbonyl carbon of benzaldehyde on the ortho position of the N-phenyl substituent, 6.6 kcal·mol(−1), prevents the formation of the formal [2+2] cycloadduct. The present MEDT study provides a different vision of the molecular mechanism of these reactions based on the electron density. MDPI 2023-08-23 /pmc/articles/PMC10488853/ /pubmed/37687040 http://dx.doi.org/10.3390/molecules28176211 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Domingo, Luis R. Aurell, María José Ríos-Gutiérrez, Mar A Molecular Electron Density Theory Study of the Domino Reaction of N-Phenyl Iminoboranes with Benzaldehyde Yielding Fused Bicyclic Compounds |
title | A Molecular Electron Density Theory Study of the Domino Reaction of N-Phenyl Iminoboranes with Benzaldehyde Yielding Fused Bicyclic Compounds |
title_full | A Molecular Electron Density Theory Study of the Domino Reaction of N-Phenyl Iminoboranes with Benzaldehyde Yielding Fused Bicyclic Compounds |
title_fullStr | A Molecular Electron Density Theory Study of the Domino Reaction of N-Phenyl Iminoboranes with Benzaldehyde Yielding Fused Bicyclic Compounds |
title_full_unstemmed | A Molecular Electron Density Theory Study of the Domino Reaction of N-Phenyl Iminoboranes with Benzaldehyde Yielding Fused Bicyclic Compounds |
title_short | A Molecular Electron Density Theory Study of the Domino Reaction of N-Phenyl Iminoboranes with Benzaldehyde Yielding Fused Bicyclic Compounds |
title_sort | molecular electron density theory study of the domino reaction of n-phenyl iminoboranes with benzaldehyde yielding fused bicyclic compounds |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488853/ https://www.ncbi.nlm.nih.gov/pubmed/37687040 http://dx.doi.org/10.3390/molecules28176211 |
work_keys_str_mv | AT domingoluisr amolecularelectrondensitytheorystudyofthedominoreactionofnphenyliminoboraneswithbenzaldehydeyieldingfusedbicycliccompounds AT aurellmariajose amolecularelectrondensitytheorystudyofthedominoreactionofnphenyliminoboraneswithbenzaldehydeyieldingfusedbicycliccompounds AT riosgutierrezmar amolecularelectrondensitytheorystudyofthedominoreactionofnphenyliminoboraneswithbenzaldehydeyieldingfusedbicycliccompounds AT domingoluisr molecularelectrondensitytheorystudyofthedominoreactionofnphenyliminoboraneswithbenzaldehydeyieldingfusedbicycliccompounds AT aurellmariajose molecularelectrondensitytheorystudyofthedominoreactionofnphenyliminoboraneswithbenzaldehydeyieldingfusedbicycliccompounds AT riosgutierrezmar molecularelectrondensitytheorystudyofthedominoreactionofnphenyliminoboraneswithbenzaldehydeyieldingfusedbicycliccompounds |