Cargando…

Effects of Material Structure on Stress Relaxation Characteristics of Rapidly Solidified Al-Fe Alloy

An Al-Fe alloy which was produced by hot extrusion of rapidly solidified powder is a possible solution to substitute copper-based electrical conductor material due to its high strength and high electrical conductivity. However, the stress relaxation characteristic—an essential parameter as a conduct...

Descripción completa

Detalles Bibliográficos
Autores principales: Kobayashi, Ryohei, Funazuka, Tatsuya, Maeda, Toru, Shiratori, Tomomi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488918/
https://www.ncbi.nlm.nih.gov/pubmed/37687638
http://dx.doi.org/10.3390/ma16175949
Descripción
Sumario:An Al-Fe alloy which was produced by hot extrusion of rapidly solidified powder is a possible solution to substitute copper-based electrical conductor material due to its high strength and high electrical conductivity. However, the stress relaxation characteristic—an essential parameter as a conductor material—and the effect of the material structure have not been reported, which was the aim of the present paper. An Al-5%Fe alloy was selected as the test material. The material structures were controlled by hot extrusion practice, annealing, and cold rolling. The Al-Fe intermetallic compound particles controlled the residual stress after the stress relaxation test via the Orowan mechanism. Decreasing the mean inter-particle distance reduces the electrical conductivity. The increase in the number of dislocations by the cold rolling increased strength at room temperature without changing electrical conductivity; however, it did not have a positive effect on the stress relaxation characteristics. The stress relaxation characteristics and the electrical conductivity of the Al-Fe alloy were superior to conventional C52100 H04 phosphor bronze when compared with the case of the same mass.