Cargando…

The Preparation of Golgi Apparatus-Targeted Polymer Dots Encapsulated with Carbon Nanodots of Bright Near-Infrared Fluorescence for Long-Term Bioimaging

As a vital organelle in eukaryotic cells, the Golgi apparatus is responsible for processing and transporting proteins in cells. Precisely monitoring the status of the Golgi apparatus with targeted fluorescence imaging technology is of enormous importance but remains a dramatically challenging task....

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Yiping, Song, Wei, Tang, Zhiquan, Shi, Wenru, Gao, Shumei, Wu, Jun, Wang, Yuan, Pan, Hu, Wang, Yangang, Huang, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488926/
https://www.ncbi.nlm.nih.gov/pubmed/37687195
http://dx.doi.org/10.3390/molecules28176366
Descripción
Sumario:As a vital organelle in eukaryotic cells, the Golgi apparatus is responsible for processing and transporting proteins in cells. Precisely monitoring the status of the Golgi apparatus with targeted fluorescence imaging technology is of enormous importance but remains a dramatically challenging task. In this study, we demonstrate the construction of the first Golgi apparatus-targeted near-infrared (NIR) fluorescent nanoprobe, termed Golgi-Pdots. As a starting point of our investigation, hydrophobic carbon nanodots (CNDs) with bright NIR fluorescence at 674 nm (fluorescence quantum yield: 12.18%), a narrow emission band of 23 nm, and excellent stability were easily prepared from Magnolia Denudata flowers using an ultrasonic method. Incorporating the CNDs into a polymer matrix modified with Golgi-targeting molecules allowed for the production of the water-soluble Golgi-Pdots, which showed high colloidal stability and similar optical properties compared with pristine CNDs. Further studies revealed that the Golgi-Pdots showed good biocompatibility and Golgi apparatus-targeting capability. Based on these fascinating merits, utilizing Golgi-Pdots for the long-term tracking of the Golgi apparatus inside live cells was immensely successful.