Cargando…
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
The design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix des...
Autor principal: | Ziolkowski, Patryk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489033/ https://www.ncbi.nlm.nih.gov/pubmed/37687648 http://dx.doi.org/10.3390/ma16175956 |
Ejemplares similares
-
Machine Learning Techniques in Concrete Mix Design
por: Ziolkowski, Patryk, et al.
Publicado: (2019) -
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
por: Ziolkowski, Patryk, et al.
Publicado: (2021) -
Comprehensive Machine Learning-Based Model for Predicting Compressive Strength of Ready-Mix Concrete
por: Xu, Jiajia, et al.
Publicado: (2021) -
Research on prediction of compressive strength of fly ash and slag mixed concrete based on machine learning
por: Wang, Meng, et al.
Publicado: (2022) -
On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance
por: Wan, Zhi, et al.
Publicado: (2021)