Cargando…
Concrete Cover Cracking and Reinforcement Corrosion Behavior in Concrete with New-to-Old Concrete Interfaces
In reinforced concrete (RC) structures, new-to-old concrete interfaces are widely present due to precast splices, repairs, and construction joints. In this paper, both monolithic and segmental specimens were fabricated with five kinds of water–cement ratios, including ordinary and high-strength conc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489136/ https://www.ncbi.nlm.nih.gov/pubmed/37687661 http://dx.doi.org/10.3390/ma16175969 |
_version_ | 1785103634354143232 |
---|---|
author | Zhang, Juhui Li, Jing Zhao, Yuchuan Wang, Shikun Guan, Zhongguo |
author_facet | Zhang, Juhui Li, Jing Zhao, Yuchuan Wang, Shikun Guan, Zhongguo |
author_sort | Zhang, Juhui |
collection | PubMed |
description | In reinforced concrete (RC) structures, new-to-old concrete interfaces are widely present due to precast splices, repairs, and construction joints. In this paper, both monolithic and segmental specimens were fabricated with five kinds of water–cement ratios, including ordinary and high-strength concrete. The impressed current-accelerated corrosion test was used, and the degree of reinforcement corrosion was controlled by Faraday’s Law. In the accelerated corrosion process, the concrete surface cracking, steel corrosion, and mechanical properties of the corroded steels in the segmental specimens were investigated and compared with monolithic specimens considering the pouring method, concrete strength, and the strength difference between new and old concrete. The prediction of concrete cracking time was also discussed. The results indicated that, for the monolithic specimens, longitudinal cracks could be observed on the ordinary concrete surface, while no cracks were produced on a high-strength concrete surface; only the rust leaked out at the ends. For the segmental specimens, both longitudinal and transverse cracks were produced on an ordinary concrete surface, while only transverse cracks were produced at the high-strength new-to-old concrete interfaces. The steel embedded in the segmental specimens suffered more sectional loss at the new-to-old concrete interfaces. An influence coefficient based on the section loss of the rebar was proposed to evaluate the influence of interfaces on the rust uniformity of rebars. When there were differences in strength between new and old concrete, the influence of the interface on the uniformity of steel bar cross-section loss slightly increased. Based on available theoretical analysis for uniform corrosion, the concrete cracking time of the monolithic specimens was predicted, which was basically consistent with experimental phenomena. However, further research is needed to predict the service life of segmental specimens with new-to-old concrete interfaces. |
format | Online Article Text |
id | pubmed-10489136 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104891362023-09-09 Concrete Cover Cracking and Reinforcement Corrosion Behavior in Concrete with New-to-Old Concrete Interfaces Zhang, Juhui Li, Jing Zhao, Yuchuan Wang, Shikun Guan, Zhongguo Materials (Basel) Article In reinforced concrete (RC) structures, new-to-old concrete interfaces are widely present due to precast splices, repairs, and construction joints. In this paper, both monolithic and segmental specimens were fabricated with five kinds of water–cement ratios, including ordinary and high-strength concrete. The impressed current-accelerated corrosion test was used, and the degree of reinforcement corrosion was controlled by Faraday’s Law. In the accelerated corrosion process, the concrete surface cracking, steel corrosion, and mechanical properties of the corroded steels in the segmental specimens were investigated and compared with monolithic specimens considering the pouring method, concrete strength, and the strength difference between new and old concrete. The prediction of concrete cracking time was also discussed. The results indicated that, for the monolithic specimens, longitudinal cracks could be observed on the ordinary concrete surface, while no cracks were produced on a high-strength concrete surface; only the rust leaked out at the ends. For the segmental specimens, both longitudinal and transverse cracks were produced on an ordinary concrete surface, while only transverse cracks were produced at the high-strength new-to-old concrete interfaces. The steel embedded in the segmental specimens suffered more sectional loss at the new-to-old concrete interfaces. An influence coefficient based on the section loss of the rebar was proposed to evaluate the influence of interfaces on the rust uniformity of rebars. When there were differences in strength between new and old concrete, the influence of the interface on the uniformity of steel bar cross-section loss slightly increased. Based on available theoretical analysis for uniform corrosion, the concrete cracking time of the monolithic specimens was predicted, which was basically consistent with experimental phenomena. However, further research is needed to predict the service life of segmental specimens with new-to-old concrete interfaces. MDPI 2023-08-31 /pmc/articles/PMC10489136/ /pubmed/37687661 http://dx.doi.org/10.3390/ma16175969 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Juhui Li, Jing Zhao, Yuchuan Wang, Shikun Guan, Zhongguo Concrete Cover Cracking and Reinforcement Corrosion Behavior in Concrete with New-to-Old Concrete Interfaces |
title | Concrete Cover Cracking and Reinforcement Corrosion Behavior in Concrete with New-to-Old Concrete Interfaces |
title_full | Concrete Cover Cracking and Reinforcement Corrosion Behavior in Concrete with New-to-Old Concrete Interfaces |
title_fullStr | Concrete Cover Cracking and Reinforcement Corrosion Behavior in Concrete with New-to-Old Concrete Interfaces |
title_full_unstemmed | Concrete Cover Cracking and Reinforcement Corrosion Behavior in Concrete with New-to-Old Concrete Interfaces |
title_short | Concrete Cover Cracking and Reinforcement Corrosion Behavior in Concrete with New-to-Old Concrete Interfaces |
title_sort | concrete cover cracking and reinforcement corrosion behavior in concrete with new-to-old concrete interfaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489136/ https://www.ncbi.nlm.nih.gov/pubmed/37687661 http://dx.doi.org/10.3390/ma16175969 |
work_keys_str_mv | AT zhangjuhui concretecovercrackingandreinforcementcorrosionbehaviorinconcretewithnewtooldconcreteinterfaces AT lijing concretecovercrackingandreinforcementcorrosionbehaviorinconcretewithnewtooldconcreteinterfaces AT zhaoyuchuan concretecovercrackingandreinforcementcorrosionbehaviorinconcretewithnewtooldconcreteinterfaces AT wangshikun concretecovercrackingandreinforcementcorrosionbehaviorinconcretewithnewtooldconcreteinterfaces AT guanzhongguo concretecovercrackingandreinforcementcorrosionbehaviorinconcretewithnewtooldconcreteinterfaces |