Cargando…

Development of a Boron Nitride-Filled Dental Adhesive System

There is a dearth of adhesive systems capable of forming stable bonds between restorative materials and tooth surfaces. To address the concern, this study determined the effects of using methacrylate-functionalized boron nitride nanosheets (BNNSs) in a polymeric dental adhesive system. The bisphenol...

Descripción completa

Detalles Bibliográficos
Autores principales: Kulanthaivel, Senthilguru, Poppen, Jeremiah, Ribeiro Cunha, Sandra, Furman, Benjamin, Whang, Kyumin, Teixeira, Erica C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489713/
https://www.ncbi.nlm.nih.gov/pubmed/37688138
http://dx.doi.org/10.3390/polym15173512
Descripción
Sumario:There is a dearth of adhesive systems capable of forming stable bonds between restorative materials and tooth surfaces. To address the concern, this study determined the effects of using methacrylate-functionalized boron nitride nanosheets (BNNSs) in a polymeric dental adhesive system. The bisphenol A glycidyl dimethacrylate (BisGMA):2 hydroxyethyl methacrylate (HEMA) (60:40) adhesive monomer blend with a photoinitiator was filled with 0 wt% (control), 0.1 wt%, and 1 wt% BNNSs and light cured. Fourier transform infrared spectroscopy was performed to determine the conversion degree of monomer double bonds (DoC). Water absorption and solubility were measured. Flexural strength and Youngs’s modulus were evaluated to determine the mechanical properties of the composite adhesive system. Finally, dentin bond strength degradation and fracture mode were quantified with a microtensile bond test to confirm the bonding ability of the developed adhesive system. Results showed that the incorporation of BNNSs increased DoC (9.8% and 5.4% for 0.1 and 1 wt%, respectively), but it did not affect water sorption (101.9–119.72 (µg/mm(3))), solubility (2.62–5.54 (µg/mm(3))), Young’s modulus (529.1–1716.1 MPa), or microtensile bond strength (46.66–54.72 MPa). Further studies are needed with varying BNNS loading percentages from 0.1 wt% to 1 wt% in order to more comprehensively determine the effect of BNNSs on dental adhesives.