Cargando…
Formation of Hydrophobic–Hydrophilic Associates in the N-Vinylpyrrolidone and Vinyl Propyl Ether Copolymer Aqueous Solutions
Utilizing turbidimetry data, an examination is conducted on the behavior of solutions containing N-vinylpyrrolidone and vinyl propyl ether copolymer within a temperature range coinciding with the occurrence of a phase transition. The investigation reveals that within specific conditions prevailing i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489714/ https://www.ncbi.nlm.nih.gov/pubmed/37688204 http://dx.doi.org/10.3390/polym15173578 |
_version_ | 1785103683710615552 |
---|---|
author | Kabdushev, Sherniyaz Mun, Grigoriy Suleimenov, Ibragim Alikulov, Adilet Shaikhutdinov, Ramazan Kopishev, Eldar |
author_facet | Kabdushev, Sherniyaz Mun, Grigoriy Suleimenov, Ibragim Alikulov, Adilet Shaikhutdinov, Ramazan Kopishev, Eldar |
author_sort | Kabdushev, Sherniyaz |
collection | PubMed |
description | Utilizing turbidimetry data, an examination is conducted on the behavior of solutions containing N-vinylpyrrolidone and vinyl propyl ether copolymer within a temperature range coinciding with the occurrence of a phase transition. The investigation reveals that within specific conditions prevailing in this domain, the emergence of entities denoted as hydrophobic–hydrophilic associates is conceivable. These entities are characterized by the presence of a relatively dense core, upheld by hydrophobic interplays, and they are proficient in effectively dispersing irradiation within the optical spectrum. Encircling this core is a hydrophilic periphery that impedes the formation of insoluble precipitates. The development of such associates transpires when hydrophobic interactions have attained a discernible prominence, although they remain inadequate to counteract the forces that drive the expansion of macromolecular coils. Under these circumstances, the energetically favored course of action entails the constitution of a core for the aforementioned associates, involving discrete segments from diverse macromolecules. Notably, the introduction of an additional constituent (ethanol) to the solution, which selectively mitigates hydrophobic interactions, serves to stabilize the hydrophobic–hydrophilic associations. |
format | Online Article Text |
id | pubmed-10489714 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104897142023-09-09 Formation of Hydrophobic–Hydrophilic Associates in the N-Vinylpyrrolidone and Vinyl Propyl Ether Copolymer Aqueous Solutions Kabdushev, Sherniyaz Mun, Grigoriy Suleimenov, Ibragim Alikulov, Adilet Shaikhutdinov, Ramazan Kopishev, Eldar Polymers (Basel) Article Utilizing turbidimetry data, an examination is conducted on the behavior of solutions containing N-vinylpyrrolidone and vinyl propyl ether copolymer within a temperature range coinciding with the occurrence of a phase transition. The investigation reveals that within specific conditions prevailing in this domain, the emergence of entities denoted as hydrophobic–hydrophilic associates is conceivable. These entities are characterized by the presence of a relatively dense core, upheld by hydrophobic interplays, and they are proficient in effectively dispersing irradiation within the optical spectrum. Encircling this core is a hydrophilic periphery that impedes the formation of insoluble precipitates. The development of such associates transpires when hydrophobic interactions have attained a discernible prominence, although they remain inadequate to counteract the forces that drive the expansion of macromolecular coils. Under these circumstances, the energetically favored course of action entails the constitution of a core for the aforementioned associates, involving discrete segments from diverse macromolecules. Notably, the introduction of an additional constituent (ethanol) to the solution, which selectively mitigates hydrophobic interactions, serves to stabilize the hydrophobic–hydrophilic associations. MDPI 2023-08-29 /pmc/articles/PMC10489714/ /pubmed/37688204 http://dx.doi.org/10.3390/polym15173578 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kabdushev, Sherniyaz Mun, Grigoriy Suleimenov, Ibragim Alikulov, Adilet Shaikhutdinov, Ramazan Kopishev, Eldar Formation of Hydrophobic–Hydrophilic Associates in the N-Vinylpyrrolidone and Vinyl Propyl Ether Copolymer Aqueous Solutions |
title | Formation of Hydrophobic–Hydrophilic Associates in the N-Vinylpyrrolidone and Vinyl Propyl Ether Copolymer Aqueous Solutions |
title_full | Formation of Hydrophobic–Hydrophilic Associates in the N-Vinylpyrrolidone and Vinyl Propyl Ether Copolymer Aqueous Solutions |
title_fullStr | Formation of Hydrophobic–Hydrophilic Associates in the N-Vinylpyrrolidone and Vinyl Propyl Ether Copolymer Aqueous Solutions |
title_full_unstemmed | Formation of Hydrophobic–Hydrophilic Associates in the N-Vinylpyrrolidone and Vinyl Propyl Ether Copolymer Aqueous Solutions |
title_short | Formation of Hydrophobic–Hydrophilic Associates in the N-Vinylpyrrolidone and Vinyl Propyl Ether Copolymer Aqueous Solutions |
title_sort | formation of hydrophobic–hydrophilic associates in the n-vinylpyrrolidone and vinyl propyl ether copolymer aqueous solutions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489714/ https://www.ncbi.nlm.nih.gov/pubmed/37688204 http://dx.doi.org/10.3390/polym15173578 |
work_keys_str_mv | AT kabdushevsherniyaz formationofhydrophobichydrophilicassociatesinthenvinylpyrrolidoneandvinylpropylethercopolymeraqueoussolutions AT mungrigoriy formationofhydrophobichydrophilicassociatesinthenvinylpyrrolidoneandvinylpropylethercopolymeraqueoussolutions AT suleimenovibragim formationofhydrophobichydrophilicassociatesinthenvinylpyrrolidoneandvinylpropylethercopolymeraqueoussolutions AT alikulovadilet formationofhydrophobichydrophilicassociatesinthenvinylpyrrolidoneandvinylpropylethercopolymeraqueoussolutions AT shaikhutdinovramazan formationofhydrophobichydrophilicassociatesinthenvinylpyrrolidoneandvinylpropylethercopolymeraqueoussolutions AT kopisheveldar formationofhydrophobichydrophilicassociatesinthenvinylpyrrolidoneandvinylpropylethercopolymeraqueoussolutions |