Cargando…
Low Detection Limit and High Sensitivity 2-Butanone Gas Sensor Based on ZnO Nanosheets Decorated by Co Nanoparticles Derived from ZIF-67
2-butanone has been certified to cause potential harm to the human body, environment, etc. Therefore, achieving a method for the high sensitivity and low limit detection of 2-butanone is of great significance. To achieve this goal, this article uses ZIF-67 prepared by a precipitation method as a cob...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489766/ https://www.ncbi.nlm.nih.gov/pubmed/37686906 http://dx.doi.org/10.3390/nano13172398 |
Sumario: | 2-butanone has been certified to cause potential harm to the human body, environment, etc. Therefore, achieving a method for the high sensitivity and low limit detection of 2-butanone is of great significance. To achieve this goal, this article uses ZIF-67 prepared by a precipitation method as a cobalt source, and then prepares cobalt-modified zinc oxide nanosheets through a hydrothermal method. The microstructure of the materials was observed by SEM, EDS, TEM, HRTEM, XPS and XRD. The test data display that the sensor ZC2 can produce a high response (2540) to 100 ppm 2-butanone at 270 °C, which is 21 times higher than that of pure ZnO materials. Its detection limit is also optimized to 24 ppb. The sensor (ZC2) also excels in these properties: selectivity, repeatability and stability over 30 days. Further analysis indicates that the synergistic and catalytic effects of p-n heterojunction are the key sources for optimizing the performance of sensors for detecting 2-butanone. |
---|