Cargando…
Interpretable Machine Learning Methods for Monitoring Polymer Degradation in Extrusion of Polylactic Acid
This work investigates real-time monitoring of extrusion-induced degradation in different grades of PLA across a range of process conditions and machine set-ups. Data on machine settings together with in-process sensor data, including temperature, pressure, and near-infrared (NIR) spectra, are used...
Autores principales: | Munir, Nimra, McMorrow, Ross, Mulrennan, Konrad, Whitaker, Darren, McLoone, Seán, Kellomäki, Minna, Talvitie, Elina, Lyyra, Inari, McAfee, Marion |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489772/ https://www.ncbi.nlm.nih.gov/pubmed/37688192 http://dx.doi.org/10.3390/polym15173566 |
Ejemplares similares
-
Machine Learning for Process Monitoring and Control of Hot-Melt Extrusion: Current State of the Art and Future Directions
por: Munir, Nimra, et al.
Publicado: (2021) -
NIR-Based Intelligent Sensing of Product Yield Stress for High-Value Bioresorbable Polymer Processing
por: Mulrennan, Konrad, et al.
Publicado: (2022) -
Impact of Glass Composition on Hydrolytic Degradation of Polylactide/Bioactive Glass Composites
por: Lyyra, Inari, et al.
Publicado: (2021) -
The incidence and body site of skin cancers in the population groups of Astana, Kazakhstan
por: McLoone, Pauline, et al.
Publicado: (2018) -
Mathematica
por: McLoone, Jon, et al.
Publicado: (1999)