Cargando…

Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation

By taking advantage of the outstanding intrinsic optoelectronic properties of perovskite-based photovoltaic materials, together with the strong near-infrared (NIR) absorption and electronic confinement in PbS quantum dots (QDs), sub-bandgap photocurrent generation is possible, opening the way for so...

Descripción completa

Detalles Bibliográficos
Autores principales: Ribeiro, G., Ferreira, G., Menda, U. D., Alexandre, M., Brites, M. J., Barreiros, M. A., Jana, S., Águas, H., Martins, R., Fernandes, P. A., Salomé, P., Mendes, M. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489900/
https://www.ncbi.nlm.nih.gov/pubmed/37686955
http://dx.doi.org/10.3390/nano13172447
_version_ 1785103716024582144
author Ribeiro, G.
Ferreira, G.
Menda, U. D.
Alexandre, M.
Brites, M. J.
Barreiros, M. A.
Jana, S.
Águas, H.
Martins, R.
Fernandes, P. A.
Salomé, P.
Mendes, M. J.
author_facet Ribeiro, G.
Ferreira, G.
Menda, U. D.
Alexandre, M.
Brites, M. J.
Barreiros, M. A.
Jana, S.
Águas, H.
Martins, R.
Fernandes, P. A.
Salomé, P.
Mendes, M. J.
author_sort Ribeiro, G.
collection PubMed
description By taking advantage of the outstanding intrinsic optoelectronic properties of perovskite-based photovoltaic materials, together with the strong near-infrared (NIR) absorption and electronic confinement in PbS quantum dots (QDs), sub-bandgap photocurrent generation is possible, opening the way for solar cell efficiencies surpassing the classical limits. The present study shows an effective methodology for the inclusion of high densities of colloidal PbS QDs in a MAPbI(3) (methylammonium lead iodide) perovskite matrix as a means to enhance the spectral window of photon absorption of the perovskite host film and allow photocurrent production below its bandgap. The QDs were introduced in the perovskite matrix in different sizes and concentrations to study the formation of quantum-confined levels within the host bandgap and the potential formation of a delocalized intermediate mini-band (IB). Pronounced sub-bandgap (in NIR) absorption was optically confirmed with the introduction of QDs in the perovskite. The consequent photocurrent generation was demonstrated via photoconductivity measurements, which indicated IB establishment in the films. Despite verifying the reduced crystallinity of the MAPbI(3) matrix with a higher concentration and size of the embedded QDs, the nanostructured films showed pronounced enhancement (above 10-fold) in NIR absorption and consequent photocurrent generation at photon energies below the perovskite bandgap.
format Online
Article
Text
id pubmed-10489900
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104899002023-09-09 Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation Ribeiro, G. Ferreira, G. Menda, U. D. Alexandre, M. Brites, M. J. Barreiros, M. A. Jana, S. Águas, H. Martins, R. Fernandes, P. A. Salomé, P. Mendes, M. J. Nanomaterials (Basel) Article By taking advantage of the outstanding intrinsic optoelectronic properties of perovskite-based photovoltaic materials, together with the strong near-infrared (NIR) absorption and electronic confinement in PbS quantum dots (QDs), sub-bandgap photocurrent generation is possible, opening the way for solar cell efficiencies surpassing the classical limits. The present study shows an effective methodology for the inclusion of high densities of colloidal PbS QDs in a MAPbI(3) (methylammonium lead iodide) perovskite matrix as a means to enhance the spectral window of photon absorption of the perovskite host film and allow photocurrent production below its bandgap. The QDs were introduced in the perovskite matrix in different sizes and concentrations to study the formation of quantum-confined levels within the host bandgap and the potential formation of a delocalized intermediate mini-band (IB). Pronounced sub-bandgap (in NIR) absorption was optically confirmed with the introduction of QDs in the perovskite. The consequent photocurrent generation was demonstrated via photoconductivity measurements, which indicated IB establishment in the films. Despite verifying the reduced crystallinity of the MAPbI(3) matrix with a higher concentration and size of the embedded QDs, the nanostructured films showed pronounced enhancement (above 10-fold) in NIR absorption and consequent photocurrent generation at photon energies below the perovskite bandgap. MDPI 2023-08-29 /pmc/articles/PMC10489900/ /pubmed/37686955 http://dx.doi.org/10.3390/nano13172447 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ribeiro, G.
Ferreira, G.
Menda, U. D.
Alexandre, M.
Brites, M. J.
Barreiros, M. A.
Jana, S.
Águas, H.
Martins, R.
Fernandes, P. A.
Salomé, P.
Mendes, M. J.
Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation
title Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation
title_full Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation
title_fullStr Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation
title_full_unstemmed Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation
title_short Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation
title_sort sub-bandgap sensitization of perovskite semiconductors via colloidal quantum dots incorporation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489900/
https://www.ncbi.nlm.nih.gov/pubmed/37686955
http://dx.doi.org/10.3390/nano13172447
work_keys_str_mv AT ribeirog subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation
AT ferreirag subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation
AT mendaud subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation
AT alexandrem subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation
AT britesmj subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation
AT barreirosma subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation
AT janas subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation
AT aguash subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation
AT martinsr subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation
AT fernandespa subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation
AT salomep subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation
AT mendesmj subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation