Cargando…
Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation
By taking advantage of the outstanding intrinsic optoelectronic properties of perovskite-based photovoltaic materials, together with the strong near-infrared (NIR) absorption and electronic confinement in PbS quantum dots (QDs), sub-bandgap photocurrent generation is possible, opening the way for so...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489900/ https://www.ncbi.nlm.nih.gov/pubmed/37686955 http://dx.doi.org/10.3390/nano13172447 |
_version_ | 1785103716024582144 |
---|---|
author | Ribeiro, G. Ferreira, G. Menda, U. D. Alexandre, M. Brites, M. J. Barreiros, M. A. Jana, S. Águas, H. Martins, R. Fernandes, P. A. Salomé, P. Mendes, M. J. |
author_facet | Ribeiro, G. Ferreira, G. Menda, U. D. Alexandre, M. Brites, M. J. Barreiros, M. A. Jana, S. Águas, H. Martins, R. Fernandes, P. A. Salomé, P. Mendes, M. J. |
author_sort | Ribeiro, G. |
collection | PubMed |
description | By taking advantage of the outstanding intrinsic optoelectronic properties of perovskite-based photovoltaic materials, together with the strong near-infrared (NIR) absorption and electronic confinement in PbS quantum dots (QDs), sub-bandgap photocurrent generation is possible, opening the way for solar cell efficiencies surpassing the classical limits. The present study shows an effective methodology for the inclusion of high densities of colloidal PbS QDs in a MAPbI(3) (methylammonium lead iodide) perovskite matrix as a means to enhance the spectral window of photon absorption of the perovskite host film and allow photocurrent production below its bandgap. The QDs were introduced in the perovskite matrix in different sizes and concentrations to study the formation of quantum-confined levels within the host bandgap and the potential formation of a delocalized intermediate mini-band (IB). Pronounced sub-bandgap (in NIR) absorption was optically confirmed with the introduction of QDs in the perovskite. The consequent photocurrent generation was demonstrated via photoconductivity measurements, which indicated IB establishment in the films. Despite verifying the reduced crystallinity of the MAPbI(3) matrix with a higher concentration and size of the embedded QDs, the nanostructured films showed pronounced enhancement (above 10-fold) in NIR absorption and consequent photocurrent generation at photon energies below the perovskite bandgap. |
format | Online Article Text |
id | pubmed-10489900 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104899002023-09-09 Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation Ribeiro, G. Ferreira, G. Menda, U. D. Alexandre, M. Brites, M. J. Barreiros, M. A. Jana, S. Águas, H. Martins, R. Fernandes, P. A. Salomé, P. Mendes, M. J. Nanomaterials (Basel) Article By taking advantage of the outstanding intrinsic optoelectronic properties of perovskite-based photovoltaic materials, together with the strong near-infrared (NIR) absorption and electronic confinement in PbS quantum dots (QDs), sub-bandgap photocurrent generation is possible, opening the way for solar cell efficiencies surpassing the classical limits. The present study shows an effective methodology for the inclusion of high densities of colloidal PbS QDs in a MAPbI(3) (methylammonium lead iodide) perovskite matrix as a means to enhance the spectral window of photon absorption of the perovskite host film and allow photocurrent production below its bandgap. The QDs were introduced in the perovskite matrix in different sizes and concentrations to study the formation of quantum-confined levels within the host bandgap and the potential formation of a delocalized intermediate mini-band (IB). Pronounced sub-bandgap (in NIR) absorption was optically confirmed with the introduction of QDs in the perovskite. The consequent photocurrent generation was demonstrated via photoconductivity measurements, which indicated IB establishment in the films. Despite verifying the reduced crystallinity of the MAPbI(3) matrix with a higher concentration and size of the embedded QDs, the nanostructured films showed pronounced enhancement (above 10-fold) in NIR absorption and consequent photocurrent generation at photon energies below the perovskite bandgap. MDPI 2023-08-29 /pmc/articles/PMC10489900/ /pubmed/37686955 http://dx.doi.org/10.3390/nano13172447 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ribeiro, G. Ferreira, G. Menda, U. D. Alexandre, M. Brites, M. J. Barreiros, M. A. Jana, S. Águas, H. Martins, R. Fernandes, P. A. Salomé, P. Mendes, M. J. Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation |
title | Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation |
title_full | Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation |
title_fullStr | Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation |
title_full_unstemmed | Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation |
title_short | Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation |
title_sort | sub-bandgap sensitization of perovskite semiconductors via colloidal quantum dots incorporation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489900/ https://www.ncbi.nlm.nih.gov/pubmed/37686955 http://dx.doi.org/10.3390/nano13172447 |
work_keys_str_mv | AT ribeirog subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation AT ferreirag subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation AT mendaud subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation AT alexandrem subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation AT britesmj subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation AT barreirosma subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation AT janas subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation AT aguash subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation AT martinsr subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation AT fernandespa subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation AT salomep subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation AT mendesmj subbandgapsensitizationofperovskitesemiconductorsviacolloidalquantumdotsincorporation |