Cargando…
Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm
Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming, it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490075/ https://www.ncbi.nlm.nih.gov/pubmed/37687325 http://dx.doi.org/10.3390/plants12173078 |
_version_ | 1785103757599571968 |
---|---|
author | Ghimire, Amit Kim, Seong-Hoon Cho, Areum Jang, Naeun Ahn, Seonhwa Islam, Mohammad Shafiqul Mansoor, Sheikh Chung, Yong Suk Kim, Yoonha |
author_facet | Ghimire, Amit Kim, Seong-Hoon Cho, Areum Jang, Naeun Ahn, Seonhwa Islam, Mohammad Shafiqul Mansoor, Sheikh Chung, Yong Suk Kim, Yoonha |
author_sort | Ghimire, Amit |
collection | PubMed |
description | Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming, it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the appropriate size, shape, color, and absence of any damage. By studying the relationship between seed shape and other traits, we can effectively identify different genotypes and improve breeding strategies to develop high-yielding soybean seeds. This study focused on the analysis of seed traits using a Python algorithm. The seed length, width, projected area, and aspect ratio were measured, and the total number of seeds was calculated. The OpenCV library along with the contour detection function were used to measure the seed traits. The seed traits obtained through the algorithm were compared with the values obtained manually and from two software applications (SmartGrain and WinDIAS). The algorithm-derived measurements for the seed length, width, and projected area showed a strong correlation with the measurements obtained using various methods, with R-square values greater than 0.95 (p < 0.0001). Similarly, the error metrics, including the residual standard error, root mean square error, and mean absolute error, were all below 0.5% when comparing the seed length, width, and aspect ratio across different measurement methods. For the projected area, the error was less than 4% when compared with different measurement methods. Furthermore, the algorithm used to count the number of seeds present in the acquired images was highly accurate, and only a few errors were observed. This was a preliminary study that investigated only some morphological traits, and further research is needed to explore more seed attributes. |
format | Online Article Text |
id | pubmed-10490075 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104900752023-09-09 Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm Ghimire, Amit Kim, Seong-Hoon Cho, Areum Jang, Naeun Ahn, Seonhwa Islam, Mohammad Shafiqul Mansoor, Sheikh Chung, Yong Suk Kim, Yoonha Plants (Basel) Communication Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming, it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the appropriate size, shape, color, and absence of any damage. By studying the relationship between seed shape and other traits, we can effectively identify different genotypes and improve breeding strategies to develop high-yielding soybean seeds. This study focused on the analysis of seed traits using a Python algorithm. The seed length, width, projected area, and aspect ratio were measured, and the total number of seeds was calculated. The OpenCV library along with the contour detection function were used to measure the seed traits. The seed traits obtained through the algorithm were compared with the values obtained manually and from two software applications (SmartGrain and WinDIAS). The algorithm-derived measurements for the seed length, width, and projected area showed a strong correlation with the measurements obtained using various methods, with R-square values greater than 0.95 (p < 0.0001). Similarly, the error metrics, including the residual standard error, root mean square error, and mean absolute error, were all below 0.5% when comparing the seed length, width, and aspect ratio across different measurement methods. For the projected area, the error was less than 4% when compared with different measurement methods. Furthermore, the algorithm used to count the number of seeds present in the acquired images was highly accurate, and only a few errors were observed. This was a preliminary study that investigated only some morphological traits, and further research is needed to explore more seed attributes. MDPI 2023-08-28 /pmc/articles/PMC10490075/ /pubmed/37687325 http://dx.doi.org/10.3390/plants12173078 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Ghimire, Amit Kim, Seong-Hoon Cho, Areum Jang, Naeun Ahn, Seonhwa Islam, Mohammad Shafiqul Mansoor, Sheikh Chung, Yong Suk Kim, Yoonha Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm |
title | Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm |
title_full | Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm |
title_fullStr | Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm |
title_full_unstemmed | Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm |
title_short | Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm |
title_sort | automatic evaluation of soybean seed traits using rgb image data and a python algorithm |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490075/ https://www.ncbi.nlm.nih.gov/pubmed/37687325 http://dx.doi.org/10.3390/plants12173078 |
work_keys_str_mv | AT ghimireamit automaticevaluationofsoybeanseedtraitsusingrgbimagedataandapythonalgorithm AT kimseonghoon automaticevaluationofsoybeanseedtraitsusingrgbimagedataandapythonalgorithm AT choareum automaticevaluationofsoybeanseedtraitsusingrgbimagedataandapythonalgorithm AT jangnaeun automaticevaluationofsoybeanseedtraitsusingrgbimagedataandapythonalgorithm AT ahnseonhwa automaticevaluationofsoybeanseedtraitsusingrgbimagedataandapythonalgorithm AT islammohammadshafiqul automaticevaluationofsoybeanseedtraitsusingrgbimagedataandapythonalgorithm AT mansoorsheikh automaticevaluationofsoybeanseedtraitsusingrgbimagedataandapythonalgorithm AT chungyongsuk automaticevaluationofsoybeanseedtraitsusingrgbimagedataandapythonalgorithm AT kimyoonha automaticevaluationofsoybeanseedtraitsusingrgbimagedataandapythonalgorithm |