Cargando…
Global Transcriptome and Co-Expression Network Analyses Revealed Hub Genes Controlling Seed Size/Weight and/or Oil Content in Peanut
Cultivated peanut (Arachis hypogaea L.) is an important economic and oilseed crop worldwide, providing high-quality edible oil and high protein content. Seed size/weight and oil content are two important determinants of yield and quality in peanut breeding. To identify key regulators controlling the...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490140/ https://www.ncbi.nlm.nih.gov/pubmed/37687391 http://dx.doi.org/10.3390/plants12173144 |
_version_ | 1785103773742399488 |
---|---|
author | Yang, Lingli Yang, Li Ding, Yingbin Chen, Yuning Liu, Nian Zhou, Xiaojing Huang, Li Luo, Huaiyong Xie, Meili Liao, Boshou Jiang, Huifang |
author_facet | Yang, Lingli Yang, Li Ding, Yingbin Chen, Yuning Liu, Nian Zhou, Xiaojing Huang, Li Luo, Huaiyong Xie, Meili Liao, Boshou Jiang, Huifang |
author_sort | Yang, Lingli |
collection | PubMed |
description | Cultivated peanut (Arachis hypogaea L.) is an important economic and oilseed crop worldwide, providing high-quality edible oil and high protein content. Seed size/weight and oil content are two important determinants of yield and quality in peanut breeding. To identify key regulators controlling these two traits, two peanut cultivars with contrasting phenotypes were compared to each other, one having a larger seed size and higher oil content (Zhonghua16, ZH16 for short), while the second cultivar had smaller-sized seeds and lower oil content (Zhonghua6, ZH6). Whole transcriptome analyses were performed on these two cultivars at four stages of seed development. The results showed that ~40% of the expressed genes were stage-specific in each cultivar during seed development, especially at the early stage of development. In addition, we identified a total of 5356 differentially expressed genes (DEGs) between ZH16 and ZH6 across four development stages. Weighted gene co-expression network analysis (WGCNA) based on DEGs revealed multiple hub genes with potential roles in seed size/weight and/or oil content. These hub genes were mainly involved in transcription factors (TFs), phytohormones, the ubiquitin–proteasome pathway, and fatty acid synthesis. Overall, the candidate genes and co-expression networks detected in this study could be a valuable resource for genetic breeding to improve seed yield and quality traits in peanut. |
format | Online Article Text |
id | pubmed-10490140 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104901402023-09-09 Global Transcriptome and Co-Expression Network Analyses Revealed Hub Genes Controlling Seed Size/Weight and/or Oil Content in Peanut Yang, Lingli Yang, Li Ding, Yingbin Chen, Yuning Liu, Nian Zhou, Xiaojing Huang, Li Luo, Huaiyong Xie, Meili Liao, Boshou Jiang, Huifang Plants (Basel) Article Cultivated peanut (Arachis hypogaea L.) is an important economic and oilseed crop worldwide, providing high-quality edible oil and high protein content. Seed size/weight and oil content are two important determinants of yield and quality in peanut breeding. To identify key regulators controlling these two traits, two peanut cultivars with contrasting phenotypes were compared to each other, one having a larger seed size and higher oil content (Zhonghua16, ZH16 for short), while the second cultivar had smaller-sized seeds and lower oil content (Zhonghua6, ZH6). Whole transcriptome analyses were performed on these two cultivars at four stages of seed development. The results showed that ~40% of the expressed genes were stage-specific in each cultivar during seed development, especially at the early stage of development. In addition, we identified a total of 5356 differentially expressed genes (DEGs) between ZH16 and ZH6 across four development stages. Weighted gene co-expression network analysis (WGCNA) based on DEGs revealed multiple hub genes with potential roles in seed size/weight and/or oil content. These hub genes were mainly involved in transcription factors (TFs), phytohormones, the ubiquitin–proteasome pathway, and fatty acid synthesis. Overall, the candidate genes and co-expression networks detected in this study could be a valuable resource for genetic breeding to improve seed yield and quality traits in peanut. MDPI 2023-08-31 /pmc/articles/PMC10490140/ /pubmed/37687391 http://dx.doi.org/10.3390/plants12173144 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Lingli Yang, Li Ding, Yingbin Chen, Yuning Liu, Nian Zhou, Xiaojing Huang, Li Luo, Huaiyong Xie, Meili Liao, Boshou Jiang, Huifang Global Transcriptome and Co-Expression Network Analyses Revealed Hub Genes Controlling Seed Size/Weight and/or Oil Content in Peanut |
title | Global Transcriptome and Co-Expression Network Analyses Revealed Hub Genes Controlling Seed Size/Weight and/or Oil Content in Peanut |
title_full | Global Transcriptome and Co-Expression Network Analyses Revealed Hub Genes Controlling Seed Size/Weight and/or Oil Content in Peanut |
title_fullStr | Global Transcriptome and Co-Expression Network Analyses Revealed Hub Genes Controlling Seed Size/Weight and/or Oil Content in Peanut |
title_full_unstemmed | Global Transcriptome and Co-Expression Network Analyses Revealed Hub Genes Controlling Seed Size/Weight and/or Oil Content in Peanut |
title_short | Global Transcriptome and Co-Expression Network Analyses Revealed Hub Genes Controlling Seed Size/Weight and/or Oil Content in Peanut |
title_sort | global transcriptome and co-expression network analyses revealed hub genes controlling seed size/weight and/or oil content in peanut |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490140/ https://www.ncbi.nlm.nih.gov/pubmed/37687391 http://dx.doi.org/10.3390/plants12173144 |
work_keys_str_mv | AT yanglingli globaltranscriptomeandcoexpressionnetworkanalysesrevealedhubgenescontrollingseedsizeweightandoroilcontentinpeanut AT yangli globaltranscriptomeandcoexpressionnetworkanalysesrevealedhubgenescontrollingseedsizeweightandoroilcontentinpeanut AT dingyingbin globaltranscriptomeandcoexpressionnetworkanalysesrevealedhubgenescontrollingseedsizeweightandoroilcontentinpeanut AT chenyuning globaltranscriptomeandcoexpressionnetworkanalysesrevealedhubgenescontrollingseedsizeweightandoroilcontentinpeanut AT liunian globaltranscriptomeandcoexpressionnetworkanalysesrevealedhubgenescontrollingseedsizeweightandoroilcontentinpeanut AT zhouxiaojing globaltranscriptomeandcoexpressionnetworkanalysesrevealedhubgenescontrollingseedsizeweightandoroilcontentinpeanut AT huangli globaltranscriptomeandcoexpressionnetworkanalysesrevealedhubgenescontrollingseedsizeweightandoroilcontentinpeanut AT luohuaiyong globaltranscriptomeandcoexpressionnetworkanalysesrevealedhubgenescontrollingseedsizeweightandoroilcontentinpeanut AT xiemeili globaltranscriptomeandcoexpressionnetworkanalysesrevealedhubgenescontrollingseedsizeweightandoroilcontentinpeanut AT liaoboshou globaltranscriptomeandcoexpressionnetworkanalysesrevealedhubgenescontrollingseedsizeweightandoroilcontentinpeanut AT jianghuifang globaltranscriptomeandcoexpressionnetworkanalysesrevealedhubgenescontrollingseedsizeweightandoroilcontentinpeanut |