Cargando…
High-Accuracy Maize Disease Detection Based on Attention Generative Adversarial Network and Few-Shot Learning
This study addresses the problem of maize disease detection in agricultural production, proposing a high-accuracy detection method based on Attention Generative Adversarial Network (Attention-GAN) and few-shot learning. The method introduces an attention mechanism, enabling the model to focus more o...
Autores principales: | Song, Yihong, Zhang, Haoyan, Li, Jiaqi, Ye, Ran, Zhou, Xincan, Dong, Bowen, Fan, Dongchen, Li, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490187/ https://www.ncbi.nlm.nih.gov/pubmed/37687351 http://dx.doi.org/10.3390/plants12173105 |
Ejemplares similares
-
FewJoint: few-shot learning for joint dialogue understanding
por: Hou, Yutai, et al.
Publicado: (2022) -
Few-shot segmentation with duplex network and attention augmented module
por: Zeng, Sifu, et al.
Publicado: (2023) -
A generative adversarial network with “zero-shot” learning for positron image denoising
por: Zhu, Mingwei, et al.
Publicado: (2023) -
Few-shot image classification algorithm based on attention mechanism and weight fusion
por: Meng, Xiaoxia, et al.
Publicado: (2023) -
Meta-Learning for Few-Shot Plant Disease Detection
por: Chen, Liangzhe, et al.
Publicado: (2021)