Cargando…

Monodisperse Fluorescent Polystyrene Microspheres for Staphylococcus aureus Aerosol Simulation

Staphylococcus aureus (SA) is one of the most common causes of hospital-acquired infections and foodborne illnesses and is commonly found in nature in air, dust, and water. The spread and transmission of SA aerosols in the air has the potential to cause epidemic transmission among humans and between...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Siyu, Li, Fan, Liu, Bo, Yang, Kun, Tian, Feng, Cheng, Zhi, Ding, Sheng, Hou, Kexin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490235/
https://www.ncbi.nlm.nih.gov/pubmed/37688240
http://dx.doi.org/10.3390/polym15173614
Descripción
Sumario:Staphylococcus aureus (SA) is one of the most common causes of hospital-acquired infections and foodborne illnesses and is commonly found in nature in air, dust, and water. The spread and transmission of SA aerosols in the air has the potential to cause epidemic transmission among humans and between humans and animals. To effectively provide the timely warning of SA aerosols in the atmosphere, the identification and detection of SA aerosol concentrations are required. Due to their homogeneous physicochemical properties, highly monodisperse submicron polystyrene (PS) microspheres can be used as one of the simulants of SA aerosols. In this study, 800 nm monodisperse fluorescent PS (f-PS) microspheres with fluorescence spectra and particle size distribution similar to those of SA were prepared. The 800 nm monodisperse f-PS microspheres had a fluorescence characteristic peak at 465 nm; in aerosols, 800 nm monodisperse f-PS microspheres with a similar particle size distribution to that of SA were further verified, mainly in the range of 500 nm–1000 nm; finally, it was found that the f-PS microspheres still possessed similar fluorescence characteristics after 180 days. The f-PS microspheres prepared in this study are very close to SA in terms of particle size and fluorescence properties, providing a new idea for aerosol analogs of SA.