Cargando…
Sleep CLIP: A Multimodal Sleep Staging Model Based on Sleep Signals and Sleep Staging Labels
Since the release of the contrastive language-image pre-training (CLIP) model designed by the OpenAI team, it has been applied in several fields owing to its high accuracy. Sleep staging is an important method of diagnosing sleep disorders, and the completion of sleep staging tasks with high accurac...
Autores principales: | Yang, Weijia, Wang, Yuxian, Hu, Jiancheng, Yuan, Tuming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490238/ https://www.ncbi.nlm.nih.gov/pubmed/37687797 http://dx.doi.org/10.3390/s23177341 |
Ejemplares similares
-
Simultaneous Sleep Stage and Sleep Disorder Detection from Multimodal Sensors Using Deep Learning
por: Cheng, Yi-Hsuan, et al.
Publicado: (2023) -
U-Sleep: resilient high-frequency sleep staging
por: Perslev, Mathias, et al.
Publicado: (2021) -
A Novel Sleep Staging Network Based on Data Adaptation and Multimodal Fusion
por: Duan, Lijuan, et al.
Publicado: (2021) -
Obstructive Sleep Apnea Alters Sleep Stage Transition Dynamics
por: Bianchi, Matt T., et al.
Publicado: (2010) -
MMASleepNet: A multimodal attention network based on electrophysiological signals for automatic sleep staging
por: Yubo, Zheng, et al.
Publicado: (2022)